Comparative leaf and wood anatomical characteristics of Chrysophyllum (Sapotaceae) relate to taxonomy of the species in Thailand
##plugins.themes.bootstrap3.article.main##
Abstract
Abstract. Prasawang S, Srinual A. 2020. Comparative leaf and wood anatomical characteristics of Chrysophyllum (Sapotaceae) relate to taxonomy of the species in Thailand. Biodiversitas 21: 1578-1587. Anatomical attributes are important tools for taxonomic studies of plants. The present study compared anatomical characteristics (i.e. lamina, petiole and wood) of two species of Chrysophyllum (namely Chrysophyllum cainito L. and C. roxburghii G.Don) belonging to family Sapotaceae in Thailand to develop taxonomic identification keys for two species of Chrysophyllum. Peeling and clearing methods were used for epidermal study, paraffin method for lamina and petiole transverse sections and standard microtome sectioning for anatomical analyses of wood. The findings of this study demonstrated the leaf and wood anatomical features presenting in C. cainito differs from those in the species of C. roxburghii including 1) shape and outline of epidermal cell wall 2) presence or absence of T-shaped trichome 3) presence or absence of inclusions 4) shape of vascular bundle and accessory bundle in midrib 5) shape of petiole and vascular bundle 6) grouping type of vessel 7) type of axial parenchyma 8) presence or absence of inclusions in rays and 9) thickness of fiber walls. Therefore, these characteristics can be used valuably as additional data in case of taxonomic studies of Thai Chrysophyllum.
##plugins.themes.bootstrap3.article.details##
Anderson JM, Osmond CB. 1987. Shade-sun responses: compromises between acclimation and photoinhibition. In: Kyle DJ, Osmond CB, Arntzen CJ (eds). Photoinhibition. Elsevier, Amsterdam.
Aparecida DF, Jose RP, Jose EL, Ribeiro DV, Stephan N, Mario HT, Pedro P, Swenson U. 2017. Towards a natural classification of Sapotaceae subfamily Chrysophylloideae in the Neotropics. Bot J Linn Soc 185: 27-55.
Boysen-Jensen P. 1932. Die Stoffproduktion der Pflanzen. Verlagvon Gustav Fischer, Jena.
Chayamarit K. 2014. Flora of Thailand, vol. 11 part 4. Office of the Forest Herbarium, Department of National Parks, Wildlife and Plant Conservation, Bangkok.
Das A, Bin NDB, Bhaumik A. 2010. A brief review on Chrysophyllum cainito. IJPI’s J Pharmacog Herbal Formul 1 (1): 1-7.
Esau K. 1965 Plant Anatomy. John Wiley & Sons Inc, New York.
Evans JR, Loreto F. 2000. Acquisition and diffusion of CO2 in higher plant leaves. In: Leegood RC, Sharkey TD, Caemmerer S (eds). Photosynthesis: Physiology and Metabolism. Kluwer Academic Publishers, Dordrecht.
Gallo MBC, Sarachine MJ. 2009. Biological activities of Lupeol. Int J Biomed Pharmaceut Sci 3 (1): 46-66.
Gardner S, Sidisunthorn P, Chayamarit K. 2018. Forest Trees of Southern Thailand (Vol. 3). White Lotus, Chonburi.
George OA, Adenipikun EO, Fasogbon SA, Oparanozie JA. 2018. Antimicrobial activities of Chrysophyllum albidum leaves, fruits and seeds. Am J Med Sci 10 (1): 28-44.
Haberlandt G. 1914. Physiological Plant Anatomy. Macmillan Limited, London.
Indah YN, Siti Z, Moch AH, Bambang K. 2016. Antioxidant activity of various kenitu (Chrysophyllum cainito L.) leaves extracts from Jember, Indonesia. Agric Agric Sci Procedia 9: 378-385.
Inyama CN, Mbagwu FN, Duru CM. 2016. Taxonomic relationship on some Chrysophyllum species based on anatomical studies. J Med Aromat Plants 5 (2): 1-5.
Johansen DA. 1940. Plant Microtechnique. Mc Graw-Hill. New York.
Koffi N, Ernest AK, Marie-Solange T, Beugre K, Noel ZG. 2009. Effect of aqueous extract of Chrysophyllum cainito leaves on the glycaemia of diabetic rabbits. Afr J Pharm Pharmacol 3 (10): 501-506.
Kukachka BF. 1978. Wood anatomy of the neotropical Sapotaceae VlI. Chrysophyllum. Forest Service U.S., Department of Agriculture, Wisconsin.
Mallikarjun N, Venugopal TM, Suchitha Y, Swathi D, Prashith KTR, Vinayaka KS. 2011. Antibacterial activity of Chrysophyllum roxburghii G. Don Gen (Sapotaceae) leaves. Res Rev Biomed Biotechnol 2 (1&2): 25-27.
Metcalfe CR, Chalk L. 1950. Anatomy of the Dicotyledons Vol. 2. The Clarendon, Oxford.
Nobel PS. 1977. Internal leaf area and CO2 resistance: Photosynthetic implications of variations with growth conditions and plant species. Physiol Plant 40: 137-144.
Noguchi K, Sonoike K, Terashima I. 1996. Acclimation of respiratory properties of leaves of Spinacia oleracea L., a sun species, and of Alocasia macrorrhiza (L.) G. Don., a shade species, to changes in growth irradiance. Plant Cell Physiol 37: 377-384.
Quattrocchi U. 2000. CRC World Dictionary of plant Names. CRC, New York.
Shailajan S, Gurjar D. 2014. Pharmacognostic and phytochemical evaluation of Chrysophyllum cainito Linn. leaves. Int J Pharm Sci Rev Res 26 (1): 106- 111.
Shugang L, Pennington TD. 1996. Flora of China (Vol. 15). Science Press (Beijing) and Missou, Beijing.
Soepadmo E, Saw LG, Chung RCK. 2002. Tree flora of Sabah and Sarawak (Vol. 4). Forest Research Institute Malaysia, Kuala Lumpur.
Solereder H. 1908. Systematic anatomy of the dicotyledons vol I. The Clarendon, Oxford.
Stuessy TF. 1990. Plant taxonomy: the systematic evaluation of comparative data. Columbia University, New York.
Terashima I, Hikosaka K. 1995 Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cell Environ 18: 1111-1128.
Terashima I, Miyazawa SI, Hanba YT. 2001. Why are sun leaves thicker than shade leaves? Consideration based on analyses of CO2 diffusion in the leaf. J Pl Res 114: 93-105.
Wheeler EA, Baas P, Gasson PE. 1989. IAWA list of microscopic features for hard wood Identification. IAWA Bull 10 (3): 219-332.