The potential of indigenous Bacillus sp. BT3.1 as an antifungal biopesticide against the plant pathogen Fusarium oxysporum

##plugins.themes.bootstrap3.article.main##

FARAH AISYAH NAFIDIASTRI
NATASYA THESSA LOLITA
HANA SHAFIYAH RIQINA
BELLA ZEZARI AURORA
ALMANDO GERALDI
TRI NURHARIYATI
AGUS SUPRIYANTO
NI’MATUZAHROH
FATIMAH
SALAMUN

Abstract

Abstract. Nafidiastri FA, Lolita NT, Riqina HS, Aurora BZ, Geraldi A, Nurhariyati T, Supriyanto A, Ni’matuzahroh, Fatimah, Salamun. 2024. The potential of indigenous Bacillus sp. BT3.1 as an antifungal biopesticide against the plant pathogen Fusarium oxysporum. Biodiversitas 25: 2679-2686. Biosurfactants are green surfactants that bacteria can produce, one of which is Bacillus. This genus can produce lipopeptide-type biosurfactants, namely surfactin, that can inhibit the growth of fungal pathogens. This research aims to determine the biosurfactant activity on molasses substrates and the antifungal activity of isolate BT3.1 against Fusarium oxysporum. The biosurfactant activity test method tested hemolytic activity using the spot method, surface tension analysis, and emulsification activity. In addition, an antifungal activity test was also carried out using the swab method. Characterization of isolate BT3.1 was carried out macroscopically and microscopically. The macroscopic characteristics of isolate BT3.1 show that bacteria from the genus Bacillus are moderate in size, white, irregular with serrate colony edges, shiny raised elevations, and a shiny surface texture. Microscopic characteristics of the isolate showed Gram-positive bacteria with oval-shaped endospores in the center. Based on the results of the biosurfactant activity test, isolate BT3.1 showed beta-type hemolysis activity, reduced surface tension by 23.3 mN/m on distilled water and 12 mN/m on NB media, and produced an emulsion activity value of around 52%. The results of the production of crude extract of BT3.1 isolate on 2, 4, and 6% molasses substrates showed optimal biosurfactant activity at a concentration of 4% with an incubation time of 48 hours. The antifungal activity of isolate BT3.1 showed that 80% inhibited the growth of Fusarium oxysporum, so the indigenous bacteria Bacillus sp. BT-3.1 has the potential to be developed as a raw material candidate for antifungal biopesticides against the plant pathogen Fusarium oxysporum.

##plugins.themes.bootstrap3.article.details##

References
Amraini S, Muria S, Bahruddin B, HS I, Artha U, Susanto, R. 2022. Biosurfactant production from Pseudomonas aeruginosa ATCC27853 with carbon source from crude palm oil for oil recovery. Indo. J. Chem. Res 10: 47-52. DOI: https://doi.org/10.30598/ijcr.2022.10-sai
Arifiyanto A, Surtiningsih T, Ni’matuzahroh, Fatimah, Agustina D, Alami NH. 2020. Antimicrobial activity of biosurfactant produced by actinomycetes isolated from rhizosphere of Sidoarjo mud region. Biocatalysis and Agricultural Biotechnology 24: 101513. DOI: https://doi.org/10.1016/j.bcab.2020.101513
Calvo C, Manzanera M, Silva-Castro GA, Uad I, Gonzàlez-Lòpez J. 2009. Application of bioemulsifiers in soil oil bioremediation processes. Future prospects. Sci. Total Environ 407: 3634-3640. DOI: 10.1016/j.scitotenv.2008.07.008
Chauhan S, Chauhan MS, Sharma P, Rana DS, Umar A. 2013. Physico-chemical studies of oppositely charged protein-surfactant system in aqueous solutions: sodium dodecyl sulphate (SDS)-lysozyme. Fluid Phase Equilibria 337: 39-46. DOI: https://doi.org/10.1016/j.fluid.2012.09.003
Djaenuddin, N., dan Muis, A. 2015. Karakteristik Bakteri Antagonis Bacillus Subtilis Dan Potensinya Sebagai Agens Pengendali Hayati Penyakit Tanaman; Proceeding of National Seminary Serealia 1: 489-494.
Fransiska, Nuryanti A, Puspita, RM. 2012. Pengaruh lama paparan gelombang ultrasonik frekuensi terapi terhadap jumlah koloni bakteri Streptococcus mutans. Maj Ked Gr. 19(1): 1-4. DOI: https://doi.org/10.22146/majkedgiind.15590
Islam MR, Jeong YT, Lee YS, Song CH. 2012. Isolation and identification of antifungal compounds from Bacillus Subtilis C9 inhibiting the growth of plant pathogenic fungi. Mycobiology. 40(1): 59-65. DOI: 10.5941/MYCO.2012.40.1.059
Jawetz EL, Melnick E, Adelberg A. 2010. Mikrobiologi Kedokteran. Salemba Medika, Surabaya.
Joshi M, Srivastava R, Sharma AK, Prakash A. 2013. Isolat and characterization of Fusarium oxysporum, a wilt causing fungus, for its pathogenic and non phatogenic nature in tomato (Solanum Lycopersicum). Journal Of Applied And Natural Science. 5(1): 108-117. DOI: https://doi.org/10.31018/jans.v5i1.290
Kapadia SG, Yagnik BN. 2013. Current trend and potential of microbial biosurfactants. Asian. J. exp. Biol. Sci 4(1): 1-8. DOI: https://www.researchgate.net/publication/281536756
Khalimi K, Darmadi AAK, Suprapta DN. 2019. First report on the prevalence of Colletotrichum Scovillei associated with anthracnose on chili pepper in Bali, Indonesia. International Journal of Agiculture And Biology. 22(2): 367. DOI: 10.17957/IJAB/15.1072
Kumar A, Singh SK, Kant C, Verma H, Kumar D, Singh PP, Modi A, Droby S, Kesawat MS, Alavilli H, Bhatia SK, Saratale GD, Saratale RG, Chung SM, Kumar M. 2021. Microbial biosurfactant: a new frontier for sustainable agriculture and pharmaceutical industries. Antioxidants (Basel, Switzerland). 10(9): 1472. DOI: https://doi.org/10.3390/antiox10091472
Kurniati TH. 2016. Biosurfactant producing bacteria from oil waste polluted environment and their potential in degrading Polycyclic Aromatic Hydrocarbons (PAH). [Thesis]. Institut Pertanian Bogor, Bogor. [Indonesian].
Nafidiastri FA, Susetyo RD, Nurhariyati T, Supriyanto A, Geraldi A, Ni’matuzahroh, Fatimah, Salamun. 2021. Biosurfactant activity of indigenous Bacillus sp. ES4.3 isolated from endemic breeding sites of dengue hemorrhagic fever vector in Surabaya, East Java, Indonesia. Biodiversitas 2 (12): 5375-5381. DOI: https://doi.org/10.13057/biodiv/d221219
Ngittu YS, Mantiri FR, Tallei TE, Kandou FEF. 2014. Identifikasi genus jamur Fusarium yang menginfeksi eceng gondok (Eichhornia Crassipes) di danau tondano. Pharmacon. 3(3): 156-161. DOI: https://doi.org/10.35799/pha.3.2014.5321
Ni’matuzahroh, Surtiningsih T, Isnaeni. 2003. Ability of Hydrocarbonoclastic Bacteria from Oil Polluted Environments to Produce Biosurfactants: An Environmental Bioremediation Effort. [Research Report RUT VIII.3]. Lembaga Penelitian Universitas Airlangga, Surabaya. [Indonesian].
Nitschke M, Ferraz C, Pastore GM. 2004. Selection of microorganisms for biosurfactant production using agroindustrial wastes. Brazilian Hournal of Microbiology, 35: 81-85. DOI: https://doi.org/10.1590/S1517-83822004000100013
Oliveira EM, Sales VHG, Andrade MS, Zilli JÉ, Borges WL, de Souza TM. 2021. Isolation and characterization of biosurfactant-producing bacteria from Amapaense Amazon soils. Intl J Microbiol 2021: 9959550. DOI: https://doi.org/10.1155/2021/9959550
Ozdal M, Gurkok S, Ozdal OG. 2017. Optimization of rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and chicken feather peptone. 3 Biotech 7 (2): 1-8. DOI: 10.1007/s13205-017-0774-x
Phulpoto IA, Yu Z, Hu B, Wang Y, Ndayisenga F, Li J, Liang H, Qazi MA. 2020. Production and characterization of surfactin-like biosurfactant produced by novel strain Bacillus nealsonii S2MT and it's potential for oil contaminated soil remediation. Microbial Cell Factories 19(1): 1-12. DOI: https://doi.org/10.1186/s12934-020-01402-4
P?aza G, Chojniak J, Rudnicka K, Paraszkiewicz K, Bernat P. 2015. Detection of biosurfactants in Bacillus species: genes and products identification. Journal Of Applied Microbiology 119(4): 1023-1034. DOI: 10.1111/jam.12893
Pruthi V, Cameotra, S.S. 1997. Short communication: production and properties of a biosurfactant synthesized by Arthrobacter protophormiae an Antartic strain. World Journal of Microbiology & Biotechnology 13: 137-139. DOI: https://link.springer.com/article/10.1007/BF02770822
Rochmawati ZN, Trimulyono G. 2020. Uji antagonis Bacillus subtilis dan Bacillus megaterium terhadap pertumbuhan jamur Cercospora sp. yang diisolasi dari Nepenthes sp. Lenterabio 9(3): 204-210. DOI: https://doi.org/10.26740/lenterabio.v9n3.p204-210
Saimmai A, Sobhon V, Manerat S. 2011. Molasses as a whole medium for biosurfactants production by Bacillus strains and their application. Applied Biochemistry and Biotechnology 163: 315-335. DOI: 10.1007/s12010-011-9253-8
Salamun, Ni’matuzahroh, Fatimah, Findawati V, Susetyo RD, Al-Batati N, Nurhariyati T, Supriyanto A. 2020. Prospect of native entomopathogenic Bacilli from Baluran National Park as biological control of dengue fever vector. Annals Of Biology 36(2): 232-237. DOI: https://repository.unair.ac.id/125847/1/C25.%20Fulltext%20.pdf
Sari EL, Subdrajat, Dharma B. 2015. Bioaktivitas ekstrak etanol batang karamunting (Melastoma malabathricum) sebagai antibakteri terhadap bakteri Bacillus cereus dan Salmonella enteric serovar thypi. Jurnal Science East Borneo 3(2): 17-23. DOI: https://fmipa.unmul.ac.id/files/docs/Jurnal%20Borneo%20Edo%20linda%20sari%20L.pdf
Setiani NA, Agustina N, Mardiah I, Hamdani S, Astriany D. 2020. Potensi Bacillus cereus dalam produksi biosurfaktan. Jurnal Biologi Udayana 24(2): 135-141. DOI: https://doi.org/10.24843/JBIOUNUD.2020.v24.i02.p09
Shih HD, Liu YC, Hsu FL, Mulabagal V, Dodda R, Huang JW. 2003. Fungichromin: a substance from Streptomyces padanus with inhibitory effects on Rhizoctonia solani. J. Agric. Food Chem 51: 95–99. DOI: 10.1021/jf025879b
Singh V. 2012. Biosurfactant-isolation, production, purification, and significance. IJSR 2: 1-4. DOI: https://www.researchgate.net/publication/348513495
Sopialena, S. 2015. Ketahanan beberapa varietas tomat terhadap penyakit Fusarium oxysporum dengan pemberian Trichoderma sp. Agrifor 14(1): 131-140. DOI: https://media.neliti.com/media/publications/30134-ID-ketahanan-beberapa-varietas-tomat-terhadap-penyakit-fusarium-oxysporum-dengan-pe.pdf
Wang S, Sun L, Zhang W, Chi F, Hao X, Bian J, Li Y. 2020. Bacillus Velezensis BM21, a potential and efficient biocontrol agent in control of corn stalk rot caused by Fusarium graminearum. Egyptian Journal Of Biological Pest Control 30(1): 1-10. DOI: https://doi.org/10.1186/s41938-020-0209-6
Wilumsen PAE, Karlson U. 1997. Screening of bacteria isolated from PAH-contaminated soils for production of biosurfactant and bioemulsifiers. Biodegradation 7: 415-423. DOI: 10.1007/BF00056425
Youcef-Ali M, Chaouche K, Dehimat L, Bataiche I, Ali MK, Cawoy H, Thonart P. 2014. Antifungal activity and bioactive compounds produced by Bacillus mojavensis and Bacillus subtilis. African Journal of Microbiology Research 8(6): 476-484. DOI: 10.5897/AJMR2013.6327
Youssef NH, Duncan KE, Nagle DP, Savage KN, Knapp RM, Mcinerney MJ. 2004. Comparison of methods to detect biosurfactant production by diverse microorganisms. Journal Of Microbiological Methods 56(3): 339-347. DOI: 10.1016/j.mimet.2003.11.001
Zaragosa A, Aranda FJ, Espuny MJ, Teruel JA, Marques A, Manresa A, Ortiz A. 2010. Hemolytic activity of a bacterial trehalose lipid biosurfactant produced by Rhodococcus sp.: evidence of colloid-osmotic mechanism. Langmuir 26 (11): 8567-8572. DOI: 10.1021/la904637k

Most read articles by the same author(s)

<< < 1 2 3 > >>