Molecular detection of iron gene on multidrug resistant avian fecal Escherichia coli isolated from broiler on traditional markets, Surabaya, Indonesia

##plugins.themes.bootstrap3.article.main##

MARIANA FEBRILIANTI RESILINDA PUTRI
IRFAN ALIAS KENDEK
FRESHINTA JELLIA WIBISONO
MUSTOFA HELMI EFFENDI
DADIK RAHARDJO
WIWIEK TYASNINGSIH
EMMANUEL NNABUIKE UGBO

Abstract

Abstract. Putri MFR, Kendek IA, Wibisono FJ, Effendi MH, Rahardjo D, Tyasningsih W, Ugbo EN. 2023. Molecular detection of iron gene on multidrug resistant avian fecal Escherichia coli isolated from broiler on traditional markets, Surabaya, Indonesia. Biodiversitas 24: 6454-6460. Avian Fecal Escherichia coli (AFEC) is the cause of colibacillosis, which often infects the poultry industry throughout the world. The virulence gene influences the iroN factor, which causes systemic infections in poultry. This research aimed to determine Multidrug Resistance (MDR) in AFEC obtained from traditional markets in Surabaya. There were 96 cloacal swab samples from broiler chickens. The samples were isolated and identified using culture media in the form of Eosin Methylene Blue Agar (EMBA), gram stain, Triple Sugar Iron Agar (TSIA), Sulfide Indole Motility (SIM), Simmons Citrate Agar (SCA), Voges Proskauer (MR-VP) indole and methyl test; detection of multidrug resistance using Mueller-Hinton Agar (MHA) media. The results of the isolation and identification of Escherichia coli bacteria in this study showed that 60.4% of the isolates were positive for Escherichia coli. Escherichia coli is resistant to tetracycline antibiotics by 56%, ciprofloxacin by 55%, antibiotics aztreonam 29%, kanamycin 20%, and chloramphenicol 18%. The multidrug resistance test result on Escherichia coli was 25.8%. The PCR test results for the iroN gene were 40%. Therefore, there are MDR and iroN genes in avian fecal Escherichia coli in Surabaya traditional markets; APEC with iroN gene poses the potential to affect public health.

##plugins.themes.bootstrap3.article.details##

References
Aberkane, C., Messaï, A., Messaï, C. R., & Boussaada, T. (2023). Antimicrobial resistance pattern of avian pathogenic Escherichia coli with detection of extended-spectrum ?-lactamase-producing isolates in broilers in east Algeria. Veterinary World, 16(3), 449–454. https://doi.org/10.14202/vetworld.2023.449-454
Alber, A., Costa, T., Chintoan-Uta, C., Bryson, K. J., Kaiser, P., Stevens, M. P., & Vervelde, L. (2019). Dose-dependent differential resistance of inbred chicken lines to avian pathogenic Escherichia coli challenge. Avian Pathology, 48(2), 157–167. https://doi.org/10.1080/03079457.2018.1562154
Aleksandrowicz, A., Khan, M. M., Sidorczuk, K., Noszka, M., & Kolenda, R. (2021). Whatever makes them stick – Adhesins of avian pathogenic Escherichia coli. In Veterinary Microbiology (Vol. 257). Elsevier B.V. https://doi.org/10.1016/j.vetmic.2021.109095
Allocati, N., Masulli, M., Alexeyev, M. F., & Di Ilio, C. (2013). Escherichia coli in Europe: An overview. In International Journal of Environmental Research and Public Health (Vol. 10, Issue 12, pp. 6235–6254). MDPI. https://doi.org/10.3390/ijerph10126235
Ansharieta R, Ramandinianto SC, Effendi MH, Plumeriastuti H. 2021. Molecular identification of blaCTX-M and blaTEM genes encoding extended-spectrum ß-lactamase (ESBL) producing Escherichia coli isolated from raw cow’s milk in East Java, Indonesia.
Awad, A., Arafat, N., & Elhadidy, M. (2016). Genetic elements associated with antimicrobial resistance among avian pathogenic Escherichia coli. Annals of Clinical Microbiology and Antimicrobials, 15(1). https://doi.org/10.1186/s12941-016-0174-9
Azam, M., Mohsin, M., Sajjad-ur-Rahman, & Saleemi, M. K. (2019). Virulence-associated genes and antimicrobial resistance among avian pathogenic Escherichia coli from colibacillosis affected broilers in Pakistan. Tropical Animal Health and Production, 51(5), 1259–1265. https://doi.org/10.1007/s11250-019-01823-3
Azizah, L. N., Indrawati, A., & Wibawan, I. W. T. (2022). Detection of Genes Encoding Resistance to Tetracycline and Plasmid-Mediated Quinolonones of Salmonella From Poultry of Bandung And Purwakarta Origin. Jurnal Veteriner, 23(1), 55–63. https://doi.org/10.19087/jveteriner.2022.23.1.55
Bakhshi, M., Bafghi, F., Astani, M., Ranjbar, A. R., Zandi, V. R., & Vakili, H. (2017). Antimicrobial resistance pattern of Escherichia coli isolated from chickens with colibacillosis in Yazd. In Iran. Journal of Food Quality and Hazards Control (Vol. 4). http://www.jfqhc.com
Dhaouadi, S., Soufi, L., Hamza, A., Fedida, D., Zied, C., Awadhi, E., Mtibaa, M., Hassen, B., Cherif, A., Torres, C., Abbassi, M. S., & Landolsi, R. B. (2020). Co-occurrence of mcr-1 mediated colistin resistance and ?-lactamase-encoding genes in multidrug-resistant Escherichia coli from broiler chickens with colibacillosis in Tunisia. Journal of Global Antimicrobial Resistance, 22, 538–545. https://doi.org/10.1016/j.jgar.2020.03.017
Effendi, M. H., Tyasningsih, W., Yurianti, Y. A., Rahmahani, J., Harijani, N., & Plumeriastuti, H. (2021). Presence of multidrug resistance (MDR) and extended-spectrum beta-lactamase (ESBL) of Escherichia coli isolated from cloacal swabs of broilers in several wet markets in Surabaya, Indonesia. Biodiversitas, 22(1), 304–310. https://doi.org/10.13057/biodiv/d220137
Filho, H. C. K., Brito, K. C. T., Cavalli, L. S., & Brito, B. G. (2015). Avian Pathogenic Escherichia coli (APEC)-an update on the control.
Gunawan, T. R., Mahardika, I. G. N. K., Besung, I. N. K., & Suarjana, I. G. K. (2020). Pathogenic iroN Gene Analysis In Escherichia coli Causes of Collibacillosis in Free-Range Chicken. Jurnal Veteriner, 21(3), 450–457. https://doi.org/10.19087/jveteriner.2020.21.3.450
Hardiati, A., Safika, S., Wibawan, I. W. T., Indrawati, A., & Pasaribu, F. H. (2021). Isolation and detection of antibiotics resistance genes of Escherichia coli from broiler farms in Sukabumi, Indonesia. Journal of Advanced Veterinary and Animal Research, 8(1), 84–90. https://doi.org/10.5455/javar.2021.h489
Hardiati, A., Safika, Wibawan, I. W. T., & Pasaribu, H. F. (2021). Phenotypic and Genotypic Study of Antibiotics Resistance Profile in Escherichia coli Isolated from Broilers Farm in Cianjur, Indonesia. Acta Veterinaria Indonesiana, 9(2), 97–104. http://www.journal.ipb.ac.id/indeks.php/actavetindones
Hasan, B., Faruque, R., Drobni, M., Waldenström, J., Sadique, A., Uddin Ahmed, K., Islam, Z., Hossain Parvez, M. B., Olsen, B., & Alam, M. (2011). High Prevalence of Antibiotic Resistance in Pathogenic Escherichia coli from Large- and Small-Scale Poultry Farms in Bangladesh (Vol. 55, Issue 4).
Hossain, F. E., Islam, S., Islam, M. A., Islam, S., & Ahmed, F. (2021). Detection of virulence genes of APEC (avian pathogenic Escherichia coli) isolated from poultry in Noakhali, Bangladesh. Bioresearch Communications, 7(1), 967–972. https://doi.org/10.3329/brc.v7i1.54253
Hu, J., Afayibo, D. J. A., Zhang, B., Zhu, H., Yao, L., Guo, W., Wang, X., Wang, Z., Wang, D., Peng, H., Tian, M., Qi, J., & Wang, S. (2022). Characteristics, pathogenic mechanism, zoonotic potential, drug resistance, and prevention of avian pathogenic Escherichia coli (APEC). In Frontiers in Microbiology (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2022.1049391
Ievy, S., Hoque, M. N., Islam, M. S., Sobur, M. A., Ballah, F. M., Rahman, M. S., Rahman, M. B., Hassan, J., Khan, M. F. R., & Rahman, M. T. (2022). Genomic characteristics, virulence, and antimicrobial resistance in avian pathogenic Escherichia coli MTR_BAU02 strain isolated from layer farm in Bangladesh. Journal of Global Antimicrobial Resistance, 30, 155–162. https://doi.org/10.1016/j.jgar.2022.06.001
Jeong, J., Lee, J. Y., Kang, M. S., Lee, H. J., Kang, S. Il, Lee, O. M., Kwon, Y. K., & Kim, J. H. (2021). Comparative characteristics and zoonotic potential of avian pathogenic escherichia coli (Apec) isolates from chicken and duck in south korea. Microorganisms, 9(5). https://doi.org/10.3390/microorganisms9050946
Johar, A., Al-Thani, N., Al-Hadidi, S. H., Dlissi, E., Mahmoud, M. H., & Eltai, N. O. (2021). Antibiotic resistance and virulence gene patterns associated with avian pathogenic Escherichia coli (APEC) from broiler chickens in Qatar. Antibiotics, 10(5). https://doi.org/10.3390/antibiotics10050564
Johnson, T. J., Siek, K. E., Johnson, S. J., & Nolan, L. K. (2006). DNA sequence of a ColV plasmid and prevalence of selected plasmid-encoded virulence genes among avian Escherichia coli strains. Journal of Bacteriology, 188(2), 745–758. https://doi.org/10.1128/JB.188.2.745-758.2006
Kathayat, D., Lokesh, D., Ranjit, S., & Rajashekara, G. (2021). Avian pathogenic escherichia coli (Apec): An overview of virulence and pathogenesis factors, zoonotic potential, and control strategies. In Pathogens (Vol. 10, Issue 4). MDPI AG. https://doi.org/10.3390/pathogens10040467
Kim, Y. B., Yoon, M. Y., Seo, K. W., Yoon, S., & Lee, Y. J. (2020). Molecular characterization of multidrug-resistant avian pathogenic Escherichia coli from broiler chickens in Korea. Journal of Applied Poultry Research, 29(4), 1101–1107. https://doi.org/10.1016/j.japr.2020.09.014
Li, Y., Chen, L., Wu, X., & Huo, S. (2014). Molecular characterization of multidrug-resistant avian pathogenic Escherichia coli isolated from septicemic broilers. Poultry Science, 94(4), 601–611. https://doi.org/10.3382/ps/pev008
Luhung, Y. G. A., Gusti Ketut Suarjana, I., & Tono Pasek Gelgel, K. (2017). Sensitivity of Pathogenic Escherichia coli Isolates from Organs of Broiler Chickens Infected with Collysepticemia to Oxytetracycline, Ampicillin and Sulfamethoxazole. Buletin Veteriner Udayana, 9(1), 60–66. https://doi.org/10.21531/bulvet.2017.9.1.60
Niasono, A. B., Latif, H., & Purnawarman, T. (2019). Antibiotic Resistance Against Escherichia coli Bacteria Isolated from Broiler Farms in Subang Regency, West Java. Jurnal Veteriner Jurnal Veteriner, 20(2), 187–195.
Papouskova, A., Papouskova, A., Masarikova, M., Masarikova, M., Valcek, A., Valcek, A., Senk, D., Cejkova, D., Jahodarova, E., Cizek, A., & Cizek, A. (2020). Genomic analysis of Escherichia coli strains isolated from diseased chicken in the Czech Republic. BMC Veterinary Research, 16(1). https://doi.org/10.1186/s12917-020-02407-2
Prihtiyantoro, W., Khusnan, Slipranata, M., & Rosyidi, I. (2019). Prevalence of Avian Pathogenic Escherichia coli (APEC) Strains Causes Colibacillosis in Quail. Jurnal Sain Veteriner, 37(1), 69–79. https://doi.org/10.22146/jsv.23358
Rahmahani, J., Salamah, Mufasirin, Tyasningsih, W., & Effendi, M. H. (2020). Antimicrobial resistance profile of escherichia coli from cloacal swab of domestic chicken in Surabaya traditional market. Biochemical and Cellular Archives, 20, 2993–2997. https://doi.org/10.35124/bca.2020.20.S1.2993
Ramaditya, N. A., Besung, I. N. K., & Mahardika, I. G. N. K. (2019). Detection and Sequencing Genes IroN, IutA, and HlyF in Avian Pathogenic Eschericia coli. Buletin Veteriner Udayana, 11(2), 229–238. https://doi.org/10.24843/bulvet.2019.v11.i02.p16
Saeed, M. A., Saqlain, M., Waheed, U., Ehtisham-ul-Haque, S., Khan, A. U., Rehman, A. ur, Sajid, M., Atif, F. A., Neubauer, H., & El-Adawy, H. (2023). Cross-Sectional Study for Detection and Risk Factor Analysis of ESBL-Producing Avian Pathogenic Escherichia coli Associated with Backyard Chickens in Pakistan. Antibiotics, 12(5). https://doi.org/10.3390/antibiotics12050934
Saha, O., Hoque, M. N., Islam, O. K., Rahaman, M. M., Sultana, M., & Anwar Hossain, M. (2020). Multidrug-resistant avian pathogenic Escherichia coli strains and association of their virulence genes in Bangladesh. Microorganisms, 8(8), 1–24. https://doi.org/10.3390/microorganisms8081135
Sgariglia, E., Mandolini, N. A., Napoleoni, M., Medici, L., Fraticelli, R., Conquista, M., Gianfelici, P., Staffolani, M., Fisichella, S., Capuccella, M., Sargenti, M., & Perugini, G. (2019). Antibiotic resistance pattern and virulence genes in avian pathogenic escherichia coli (Apec) from different breeding systems. Veterinaria Italiana, 55(1), 27–33. https://doi.org/10.12834/VetIt.1617.8701.1
Su, Q., Guan, T., & Lv, H. (2016). Siderophore biosynthesis coordinately modulated the virulence-associated interactive metabolome of uropathogenic Escherichia coli and human urine. Scientific Reports, 6. https://doi.org/10.1038/srep24099
Subedi, M., Luitel, H., Devkota, B., Bhattarai, R. K., Phuyal, S., Panthi, P., Shrestha, A., & Chaudhary, D. K. (2018). Antibiotic resistance pattern and virulence genes content in avian pathogenic Escherichia coli (APEC) from broiler chickens in Chitwan, Nepal. BMC Veterinary Research, 14(1). https://doi.org/10.1186/s12917-018-1442-z
Tchesnokova, V., Larson, L., Basova, I., Sledneva, Y., Choudhury, D., Solyanik, T., Heng, J., Bonilla, T. C., Pham, S., Schartz, E. M., Madziwa, L. T., Holden, E., Weissman, S. J., Ralston, J. D., & Sokurenko, E. V. (2023). Increase in the community circulation of ciprofloxacin-resistant Escherichia coli despite reduction in antibiotic prescriptions. Communications Medicine, 3(1). https://doi.org/10.1038/s43856-023-00337-2
Tohmaz, M., Askari Badouei, M., Kalateh Rahmani, H., & Hashemi Tabar, G. (2022). Antimicrobial resistance, virulence associated genes and phylogenetic background versus plasmid replicon types: the possible associations in avian pathogenic Escherichia coli (APEC). BMC Veterinary Research, 18(1). https://doi.org/10.1186/s12917-022-03496-x
Wang, Z., Zheng, X., Guo, G., Hu, Z., Miao, J., Dong, Y., Xu, Z., Zhou, Q., Wei, X., Han, X., Liu, Y., & Zhang, W. (2022). O145 may be emerging as a predominant serogroup of Avian pathogenic Escherichia coli (APEC) in China. Veterinary Microbiology, 266. https://doi.org/10.1016/j.vetmic.2022.109358
Wibisono, F. J., Sumiarto, B., Untari, T., Effendi, M. H., Permatasari, D. A., & Witaningrum, A. M. (2020). CTX Gene of Extended Spectrum Beta-Lactamase (ESBL) Producing Escherichia coli on Broilers in Blitar, Indonesia. Systematic Reviews in Pharmacy, 11(7), 396–403. https://doi.org/10.31838/srp.2020.7.59
Wibisono, F. J., Sumiarto, B., Untari, T., Effendi, M. H., Permatasari, D. A., & Witaningrum, A. M. (2021). Molecular identification of ctx gene of extended spectrum betalactamases (Esbl) producing escherichia coli on layer chicken in blitar, indonesia. Journal of Animal and Plant Sciences, 31(4), 954–959. https://doi.org/10.36899/JAPS.2021.4.0289
Wibisono, J. F., Effendi, M. H., & Wibisono, F. M. (2022). Occurrence, antimicrobial resistance, and potential zoonosis risk of avian pathogenic Escherichia coli in Indonesia: A review. International Journal of One Health, 76–85. https://doi.org/10.14202/ijoh.2022.76-85
World Health Organization. (2017). WHO publishes list of bacteria for which new antibiotics are urgently needed. World Health Organization (WHO).
Xu, X., Sun, Q., & Zhao, L. (2019). Virulence factors and antibiotic resistance of avian pathogenic Escherichia coli in eastern China. Journal of Veterinary Research (Poland), 63(3), 317–320. https://doi.org/10.2478/jvetres-2019-0056
Yanestria, S. M., Dameanti, F. N. A. E. P., Musayannah, B. G., Pratama, J. W. A., Witaningrum, A. M., Effendi, M. H., & Ugbo, E. N. (2022). Antibiotic resistance pattern of Extended-Spectrum ?-Lactamase (ESBL) producing Escherichia coli isolated from broiler farm environment in Pasuruan district, Indonesia. Biodiversitas, 23(9), 4460–4465. https://doi.org/10.13057/biodiv/d230911
Younis, G., Awad, A., & Mohamed, N. (2017). Phenotypic and genotypic characterization of antimicrobial susceptibility of avian pathogenic Escherichia coli isolated from broiler chickens. Veterinary World, 10(10), 1167–1172. https://doi.org/10.14202/vetworld.2017.1167-1172
Yu, L., Wang, H., Han, X., Li, W., Xue, M., Qi, K., Chen, X., Ni, J., Deng, R., Shang, F., & Xue, T. (2020). The two-component system, BasSR, is involved in the regulation of biofilm and virulence in avian pathogenic Escherichia coli. Avian Pathology, 49(6), 532–546. https://doi.org/10.1080/03079457.2020.1781791
Zhang, Y., Wang, Y., Zhu, H., Yi, Z., Afayibo, D. J. A., Tao, C., Li, T., Tian, M., Qi, J., Ding, C., Yu, S., & Wang, S. (2021). DctR contributes to the virulence of avian pathogenic Escherichia coli through regulation of type III secretion system 2 expression. Veterinary Research, 52(1), 101. https://doi.org/10.1186/s13567-021-00970-6

Most read articles by the same author(s)

<< < 1 2 3