Profile microsatellite mining of whole genome sequencing and transcriptomic assembly in dwarf and tall areca nut (Areca catechu) in Indonesia

##plugins.themes.bootstrap3.article.main##

MUHAMMAD ROIYAN ROMADHON
SOBIR
WILLY BAYUARDI SUWARNO
DEDEN DERAJAT MATRA

Abstract

Abstract. Romadhon MR, Sobir, Suwarno WB, Matra DD. 2024. Profile microsatellite mining of whole genome sequencing and transcriptomic assembly in dwarf and tall areca nut (Areca catechu L.) in Indonesia. Biodiversitas 25: 1081-1088. Areca nut (Areca catechu L.) has high diversity in fruit shape and flowering time. Two superior varieties are commonly cultivated in Indonesia, namely Betara areca nut (tall) and Emas areca nut (dwarf). Molecular level diversity from genomic and transcriptome of areca nut data is available at NCBI, but not yet for Indonesian areca nut. The research compared the results of SSR with two method approaches to detect genetic diversity in the plants accurately. This study aimed to compare the SSR motifs of Betara areca nut and Emas areca nut varieties from whole genome sequencing and transcriptome assembly. The research was conducted at the Leuwikopo Seed Centre Laboratory of the IPB University, Bogor, Indonesia. The methods used are Whole Genome Sequencing (WGS) and transcriptome assembly. A total number of identified SSRs from WGS approach from Betara areca nut of 95 SSRs and Emas areca nut of 95 SSRs, while Betara areca nut SSRs from transcriptome assembly of 466 SSRs and Emas areca nut of 357 SSRs. The percentage of contigs and transcripts from Betara areca nut containing SSR was 7.43% and 4.22%, respectively, while Emas areca nut was 8.06% and 2.04%, respectively. AT is the dominant SSR motif in WGS, while the GA motif dominates the transcriptome assembly results.

##plugins.themes.bootstrap3.article.details##

References
Ahmad A, Wang J, Pan Y, Gao RSS. 2018. Development and use of simple sequence repeats (SSRs) markers for sugarcane breeding and genetic studies. Agronomy 8(260):1-19. DOI:10.3390/agronomy8110260.
Ahmed W, Feyissa T, Tesfaye K, Farrakh S. 2021. Genetic diversity and population structure of date palms (Phoenix dactylifera L.) in Ethiopia using microsatellite markers. J Genet Eng Biotechnol 19(64): 1-14. DOI: https://doi.org/10.1186/s43141-021-00168-5.
Akoglu H. 2018. User's guide to correlation coefficients. Turk J Emerg Med 18:91-93. DOI: https://doi.org/10.1016/j.tjem.2018.08.001
Altman N, Krzywinski M. 2015. Association, correlation and causation. Nature Methods 12(10): 899-900. DOI: https://doi.org/10.1038/nmeth.3587.
Bhattarai G, Shi A, Devi R, Kandel, Solís Gracia N, da Silva JG, Avila C. 2021. Genome wide simple sequence repeats (SSR) markers discovered from whole genome sequence comparisons of multiple spinach accessions. Nature 11(9999): 1-16. DOI: https://doi.org/10.1038/s41598-021-89473-0.
Budiman LF, Apriyanto A, Pancoro A, Sudarsono. 2019. Illegitimacy testing of Elaeis guineensis population based on simple sequence repeat markers. Agrivita 41(3): 504-512. DOI:https://doi.org/10.17503/agrivita.v41i3.1969.
Chatterjee S. 2020. A new coefficient of correlation. J Am Stat Assoc 1(10):1–26. DOI:10.1080/01621459.2020.1758115.
George W, Staples, Robert F, Bevacqua. 2006. Areca catechu (betel nut palm). Species Profiles for Pacific Island Agroforestry. Review 1: 1-17.
Goodwin S, McPherson JD, McCombie WR. 2016. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6): 333–351. DOI:10.1038/nrg.2016.49.
Itoo H, Shah RA, Qurat S et al. 2023. Genome-wide characterization and development of SSR markers for genetic diversity analysis in northwestern Himalayas Walnut (Juglans regia L.). Biotech 13(136):1-12. DOI: https://doi.org/10.1007/s13205-023-03563-6
Karlin SC, Burge. 1995. Dinucleotide relative abundance extremes: a genomic signature. Tig 11(7): 283-290.
Kwiatek MT, Kurasiak-Popowska D, Miko?ajczyk S, Niemann J, Tomkowiak A, Weigt D, Nawraca?a J. 2019. Cytological markers used for identification and transfer of Aegilops spp. chromatin carrying valuable genes into cultivated forms of Triticum. Comp Cytogenet 13(1):41– 59. DOI:10.3897/COMPCYTOGEN.V13I1.30673.
Matra DD, Fathoni MAN, Majiidu M, Wicaksono H. 2021. The genetic variation and relationship among the natural hybrids of Mangifera casturi Kosterm. Sci Rep 11(19766): 1-10. https://doi.org/10.1038/s41598-021-99381-y.
Nadeem MA, Nawaz MA, Shahid MQ, Do?an Y, Comertpay G, Y?ld?z M, Hatipo?lu R, Ahmad F, Alsaleh A, Labhane N, et al. 2018. DNA molecular markers in plant breeding: Current status and recent advancements in genomic selection and genome editing. Biotechnol Equip 32(2):261–285. DOI:10.1080/13102818.2017.1400401.
Pei D, Song S, Kang J, Zhang C, Wang J, Dong T, Ge M Pervaiz T, Zhang P, Fang J. 2023. Characterization of Simple Sequence Repeat (SSR) Markers Mined in Whole Grape Genomes. Genes 14(663): 1-14. https://doi.org/10.3390/ genes14030663.
Qin D. 2019. Next-generation sequencing and its clinical application. Cancer Biol Med 1: 4-10. DOI: 10.20892/j.issn.2095-3941.2018.0055.
Qin Z, Wang Y, Wang Q, Li A, Hou F, Zhang L. 2015. Evolution Analysis of Simple Sequence Repeats in Plant Genome. PLoS ONE 10(12): e0144108 DOI:10.1371/journal.pone.0144108.
Qu J, Liu J. 2013. A genome-wide analysis of simple sequence repeats in maize and the development of polymorphism markers from next-generation sequence data. BMC Res 6(403):1–10. DOI: https://doi.org/10.1186/1756-0500-6-403
Rasam DV, Gokhale NB, Sawardekar SV, Patil DM. 2016. Molecular characterisation of coconut (Cocos nucifera L.) varieties using ISSR and SSR markers. The Journal of Horticultural Science and Biotechnology. 91(4): 347–352. DOI:10.1080/14620316.2016.1160544.
Roemer JJ, Hoekstra T, Jager KT, Zoccali C, Tripepi G, Dekker FW, van Diepen M. 2021. Conducting correlation analysis: important limitations and pitfalls. Clin Kidney J 14(10): 2332–2337. DOI: https://doi.org/10.1093/ckj/sfab085.
Salgotra RK, Neal Stewart C. 2020. Functional markers for precision plant breeding. Int. J Mol Sci 21(13):1–33. DOI:10.3390/ijms21134792.
Savinkova LK, Sharypova EB, Kolchanov NA. 2023. On the role of tata boxes and tata-binding protein in arabidopsis thaliana. Plants 12(1000): 1-23. DOI: https://doi.org/ 10.3390/plants12051000.
Tian Q, Huang B, Huang J et al. 2022. Microsatellite analysis and polymorphic marker development based on the full-length transcriptome of Camellia chekiangoleosa. Sci Rep 12: 1-13. DOI: https://doi.org/10.1038/s41598-022-23333-3
Vidya V, Prasath D, Snigdha M, Gobu R, Sona C, Maiti CS. 2021. Development of EST-SSR markers based on transcriptome and its validation in ginger (Zingiber officinale Rosc.). PLoS ONE 16(10): e0259146. DOI: https://doi.org/10.1371/journal. pone.0259146.
Wang S, Liu Y, Ma L, Liu H, Tang Y, Wu L, Wang Z, Li Y, Wu R, Pang X. 2014. Isolation and characterization of microsatellite markers and analysis of genetic diversity in chinese jujube (Ziziphus jujuba Mill.). plosone 9(6):e99843. DOI: https://doi.org/10.1371/journal.pone.0099842.
Xiang N, Lu B, Yuan T, Yang T, Guo J, Wu?Z, Liu H, Liu X, Qin R. 2023. De Novo Transcriptome Assembly and EST-SSR Marker Development and Application in Chrysosplenium macrophyllum. Genes 14(279): 1-17. DOI: https://doi.org/ 10.3390/genes14020279.
Xiaxia Li, Lijun Qiao, Birong Chen, Yujie Zheng, Chengchen Zhi, Siyu Zhang, Yupeng Pan, Zhihui Cheng. 2022. SSR markers development and their application in genetic diversity evaluation of garlic (Allium sativum L.) germplasm. Plant Divers 44(5): 481-491. DOI: https://doi.org/10.1016/j.pld.2021.08.001.
Xu JIE, Liu L, Xu Y, Chen C, Rong T, Ali F, et al. 2013. Development and characterization of simple sequence repeat markers providing genome-wide coverage and high resolution in maize. DNA Res 20: 497–509. DOI: 10.1093/dnares/dst026.
Zhang C, Wu Z, Jiang X, Li W, Lu Y, Wang K. 2021. De novo transcriptomic analysis and identifcation of EST SSR markers in Stephanandra incisa. Sci Rep 11(1059): 1-10. DOI: https://doi.org/10.1038/s41598-020-80329-7.
Zhang L, Yuan D, Yu S, Li Z, Cao Y, Miao Z, et al. 2004. Preference of simple sequence repeats in coding and non-coding regions of Arabidopsis thaliana. Bioinformatics 20: 1081–1096. DOI: https://doi.org/10.1093/bioinformatics/bth043.
Zhong Y, Cheng Y, Ruan M, Ye Q, Wang R, Yao Z, Zhou G, Liu J, Yu J, Wan H. 2021. High-throughput ssr marker development and the analysis of genetic diversity in Capsicum frutescens. Horticulturae 7(187): 1-14. DOI: https://doi.org/10.3390/ horticulturae7070187.
Zhou L, Yarra R, Zhao Z, Jin L, Cao H. 2020. Development of SSR markers based on transcriptome data and association mapping analysis for fruit shell thickness associated traits in oil palm (Elaeis guineensis Jacq.). Biotech 10(280): 1-11. DOI: https://doi.org/10.1007/s13205-020-02269-3.
Zhu C, Yu J. 2009. Nonmetric multidimensional scaling corrects for population structure in association mapping with different sample types. Genetics 182: 875–888. DOI: https://doi.org/10.1534/genetics.108.098863.