Exploration of indigenous copper and dye-resistant bacteria isolated from Citarum River, West Java, Indonesia

##plugins.themes.bootstrap3.article.main##

WAHYU IRAWATI
DWI NINGSIH SUSILOWATI
INDAH SOFIANA
VALENTINE LINDARTO
REINHARD PINONTOAN
TRIWIBOWO YUWONO

Abstract

Abstract. Irawati W, Susilowati DN, Sofiana I, Lindarto V, Pinontoan R, Yuwono T. 2023. Exploration of indigenous copper and dye-resistant bacteria isolated from Citarum River, West Java, Indonesia. Biodiversitas 24: 1215-1223. Bacterial bioremediation utilizing indigenous bacteria has been reported as an effective, economical, and eco-friendly solution to marine contamination. However, study on the use of dye and copper-resistant bacteria has not been done much. The study aimed to isolate copper and dye-resistant bacteria, determining copper and dye resistance and decolorization abilities. Copper and dye-resistant bacteria were isolated from the Citarum River, West Java, Indonesia. Bacterial isolates were identified based on 16S rDNA gene analysis. Copper resistance was determined by measuring the minimum inhibitory concentration (MIC) of CuSO4. Dye resistance was observed by growing the bacterial isolates on a medium containing 100-500 ppm of various dyes. The dye decolorization was analyzed by monitoring the absorbance of each dye using a spectrophotometer. Fifty-four of copper indigenous resistant bacteria have been isolated. Nine bacterial isolates that showed high resistance to copper and dye with the MIC of 11 mM CuSO4 were identified as Siccibacter colletis, Acinetobacter baumannii, Lysinibacillus fusiformis, Bacillus cereus, and Escherichia coli. The highest multi-resistant bacterium was Bacillus cereus CTR 200 3.2 with decolorization rates of 93.04%, 61.9%, and 87.43% on 100 ppm methylene blue, malachite green, and basic fuchsine dye, respectively. However, adding 5 mM CuSO4 reduced those decolorization rates to 39.39%, 10.48%, and 7.39%, respectively.

##plugins.themes.bootstrap3.article.details##

References
Abe, FR, Soares, AMVM, Oliveira, DP & Gravato, C. 2018. Toxicity of dyes to zebrafish at the biochemical level: Cellular energy allocation and neurotoxicity. Environ Poll, 235, 255–262. https://doi.org/10.1016/j.envpol.2017.12.020
Afzal, AM, Rasool MH, Waseem, M & Aslam B. 2017. Assessment of heavy metal tolerance and biosorptive potential of Klebsiella variicola isolated from industrial effluents. AMB Express, 7(1), 184. https://doi.org/10.1186/s13568-017-0482-2
Ali, H., & Khan, E. 2019. Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs—Concepts and implications for wildlife and human health. Human and Ecological Risk Assessment: An International Journal, 25(6). https://doi.org/10.1080/10807039.2018.1469398
Altimira, F., Yáñez, C., Bravo, G., González, M., Rojas, L. A., & Seeger, M. 2012. Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of central Chile. BMC Microbiology, 12(1), 193. https://doi.org/10.1186/1471-2180-12-193
Amin Al Sulami, R. J. 2015. Biosorption and Bioaccumulation of Some Heavy Metals by Deinococcus Radiodurans Isolated from Soil in Basra Governorate- Iraq. J Biotech & Biomaterials, 05(02). https://doi.org/10.4172/2155-952X.1000190
An, S.-Y., Min, S.-K., Cha, I.-H., Choi, Y.-L., Cho, Y.-S., Kim, C.-H., & Lee, Y.-C. 2002. Decolorization of triphenylmethane and azo dyes by Citrobacter sp. Biotechnology Letters, 24(12). https://doi.org/10.1023/A:1015610018103
Arora, J., Agarwal, P., & Gupta, G. 2017. Rainbow of Natural Dyes on Textiles Using Plants Extracts: Sustainable and Eco-Friendly Processes. Green and Sustainable Chemistry, 07(01), 35–47. https://doi.org/10.4236/gsc.2017.71003
Biswas, R., Halder, U., Kabiraj, A., Mondal, A., & Bandopadhyay, R. 2021. Overview on the role of heavy metals tolerance on developing antibiotic resistance in both Gram-negative and Gram-positive bacteria. Archives of Microbiology, 203(6), 2761–2770. https://doi.org/10.1007/s00203-021-02275-w
Cerboneschi, M., Corsi, M., Bianchini, R., Bonanni, M., & Tegli, S. 2015. Decolorization of acid and basic dyes: understanding the metabolic degradation and cell-induced adsorption/precipitation by Escherichia coli. Applied Microbiology and Biotechnology, 99(19), 8235–8245. https://doi.org/10.1007/s00253-015-6648-4
Chaturvedi, V., & Verma, P. 2015. Biodegradation of malachite green by a novel copper-tolerant Ochrobactrum pseudogrignonense strain GGUPV1 isolated from copper mine waste water. Bioresources and Bioprocessing, 2(1), 42. https://doi.org/10.1186/s40643-015-0070-8
Chen, K.-C., Wu, J.-Y., Liou, D.-J., & Hwang, S.-C. J. 2003. Decolorization of the textile dyes by newly isolated bacterial strains. Journal of Biotechnology, 101(1), 57–68. https://doi.org/10.1016/S0168-1656(02)00303-6
Elbanna, K., Hassan, G., Khider, M., & Mandour, R. 2010. Safe biodegradation of textile azo dyes by newly isolated lactic acid bacteria and detection of plasmids associated with degradation. Journal of Bioremediation & Biodegradation, 01. https://doi.org/10.4172/2155-6199.1000110
Hamid, N. H., Tahir, M. I. H., Chowdhury, A., Nordin, A. H., Alshaikh, A. A., Suid, M. A., Nazaruddin, N. ‘Izzah, Nozaizeli, N. D., Sharma, S., & Rushdan, A. I. 2022. The current state-of-art of copper removal from wastewater: A Review. Water, 14(19), 3086. https://doi.org/10.3390/w14193086
Hsueh, C.-C., Chen, C.-T., Hsu, A.-W., Wu, C.-C., & Chen, B.-Y. 2017. Comparative assessment of azo dyes and nitroaromatic compounds reduction using indigenous dye-decolorizing bacteria. Journal of the Taiwan Institute of Chemical Engineers, 79, 134–140. https://doi.org/10.1016/j.jtice.2017.04.017
Irawati, W. 2019. Isolasi dan karakterisasi bakteri resisten tembaga dari pantai Timur Surabaya. BIOLINK (Jurnal Biologi Lingkungan Industri Kesehatan), 6(2), 95–105. https://doi.org/10.31289/biolink.v6i2.2558
Irawati, W., Lindarto, V., Pinontoan, R., Yuwono, T., Mangunsong, F. M., & Silalahi, D. W. 2022. Burkholderia cepacia strain IrV1 multi-resistant to copper and dyes isolated from laboratory wastewater effluent. Biodiversitas, 23(5), 2614–2620. https://doi.org/10.13057/biodiv/d230544
Irawati, W., Ompusunggu, N. P., Susilowati, D. N., & Yuwono, T. 2019. Molecular and physiological characterization of indigenous copper-resistant bacteria from Cikapundung River, West Java, Indonesia. Biodiversitas, 20(2), 344–349. https://doi.org/10.13057/biodiv/d200206
Irawati, W., Pinontoan, R., Mouretta, B., & Yuwono, T. 2022. The potential of copper-resistant bacteria Acinetobacter sp. strain CN5 in decolorizing dyes. Biodiversitas, 23(2), 680–686. https://doi.org/10.13057/biodiv/d230212
Irawati, W., Riak, S., Sopiah, N., & Sulistia, S. 2017. Heavy metal tolerance in indigenous bacteria isolated from the industrial sewage in Kemisan River, Tangerang, Banten, Indonesia. Biodiversitas Journal of Biological Diversity, 18(4), 1481–1486. https://doi.org/10.13057/biodiv/d180425
Irawati, W., & Tahya, C. Y. 2021. Copper Removal by Enterobacter cloacae strain IrSuk1, Enterobacter cloacae strain IrSuk4a, and Serratia nematodiphila strain IrSuk13 Isolated from Sukolilo River-Indonesia. IOP Conference Series: Materials Science and Engineering, 1053(1), 012038. https://doi.org/10.1088/1757-899x/1053/1/012038
Irawati, W., Yuwono, T., & Rusli, A. 2016. Detection of plasmids and curing analysis in copper resistant bacteria Acinetobacter sp. IrC1, Acinetobacter sp. IrC2, and Cupriavidus sp. IrC4. Biodiversitas, 17(1), 296–300. https://doi.org/10.13057/biodiv/d170140
Irawati, W., Yuwono, T., Soedarsono, J., & Hartiko, H. 2012. Molecular and physiological characterization of copper-resistant bacteria isolated from activated sludge in an industrial wastewater treatment plant in Rungkut-Surabaya, Indonesia. Microbiology Indonesia, 6(3). https://doi.org/10.5454/mi.6.3.3
Jadhav, I., Vasniwal, R., Shrivastav, D., & Jadhav, K. 2016. Microorganism-Based Treatment of Azo Dyes. Journal of Environmental Science and Technology, 9(2). https://doi.org/10.3923/jest.2016.188.197
Jamee, R., & Siddique, R. 2019. Biodegradation of synthetic dyes of textile effluent by microorganisms: an environmentally and economically sustainable approach. European Journal of Microbiology and Immunology, 9(4), 114–118. https://doi.org/10.1556/1886.2019.00018
Jayapal, M., Jagadeesan, H., Shanmugam, M., Danisha J, P., & Murugesan, S. 2018. Sequential anaerobic-aerobic treatment using plant microbe integrated system for degradation of azo dyes and their aromatic amines by-products. Journal of Hazardous Materials, 354, 231–243. https://doi.org/10.1016/j.jhazmat.2018.04.050
Kardos, J., Héja, L., Simon, Á., Jablonkai, I., Kovács, R., & Jemnitz, K. 2018. Copper signalling: causes and consequences. Cell Communication and Signaling, 16(1). https://doi.org/10.1186/s12964-018-0277-3
Karim, M. E., Dhar, K., & Hossain, M. T. 2018. Decolorization of textile reactive dyes by bacterial monoculture and consortium screened from textile dyeing effluent. Journal of Genetic Engineering and Biotechnology, 16(2), 375–380. https://doi.org/10.1016/j.jgeb.2018.02.005
Khan, S., & Malik, A. 2018. Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye. Environmental Science and Pollution Research, 25(5), 4446–4458. https://doi.org/10.1007/s11356-017-0783-7
Kumari, D., Pan, X., Achal, V., Zhang, D., Al-Misned, F. A., & Golam Mortuza, M. 2015. Multiple metal-resistant bacteria and fungi from acidic copper mine tailings of Xinjiang, China. Environmental Earth Sciences, 74(4), 3113–3121. https://doi.org/10.1007/s12665-015-4349-z
Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. 2019. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2), 275–290. https://doi.org/10.1016/j.biori.2019.09.001
Lobo, V., Patil, A., Phatak, A., & Chandra, N. 2010. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4(8). https://doi.org/10.4103/0973-7847.70902
Mahbub, K. R., Mohammad, A., Ahmed, M. M., & Begum, S. 2012. Decolorization of synthetic dyes using bacteria isolated from textile industry effluent. Asian Journal of Biotechnology, 4(3), 129–136. https://doi.org/10.3923/ajbkr.2012.129.136
Murugesan, K., Kim, Y.-M., Jeon, J.-R., & Chang, Y.-S. 2009. Effect of metal ions on reactive dye decolorization by laccase from Ganoderma lucidum. Journal of Hazardous Materials, 168(1), 523–529. https://doi.org/10.1016/j.jhazmat.2009.02.075
Nurlaila, I., Irawati, W., Purwandari, K., & Pardamean, B. 2021. K-Means clustering model to discriminate copper-resistant bacteria as bioremediation agents. Procedia Computer Science, 179, 804–812. https://doi.org/10.1016/j.procs.2021.01.068
Ramzan, U., Shakoori, F. R., Zahid, M. T., Majeed, W., Zahra, I., Abbas, S. Z., Hedfi, A., Hassan, S., Shakoori, A. R., & Mutery, A. al. 2022. Biodegradation and decolorization of textile azo dyes by paramecium caudatum isolated from industrial wastewater. Water, 14(21), 3553. https://doi.org/10.3390/w14213553
Rani, B., Kumar, V., Singh, J., Bisht, S., Teotia, P., Sharma, S., & Kela, R. 2014. Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability. Brazilian Journal of Microbiology, 45(3), 1055–1063. https://doi.org/10.1590/S1517-83822014000300039
Rowland, J. L., & Niederweis, M. 2013. A multicopper oxidase is required for copper resistance in mycobacterium tuberculosis. Journal of Bacteriology, 195(16), 3724–3733. https://doi.org/10.1128/JB.00546-13
Senthil Kumar, P., & Saravanan, A. 2017. 11 - Sustainable wastewater treatments in textile sector. In S. S. Muthu (Ed.), Sustainable Fibres and Textiles (pp. 323–346). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-08-102041-8.00011-1
Shamim, S. 2018. Biosorption of heavy metals. in biosorption. InTech. https://doi.org/10.5772/intechopen.72099
Shrivastava, A. K. 2009. A review on copper pollution and its removal from water bodies by pollution control technologies. Indian Journal of Environmental Protection, 29, 552–560.
Tkaczyk, A., Mitrowska, K., & Posyniak, A. 2020. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of The Total Environment, 717, 137222. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.137222
Trihadiningrum, Y., Arinda, T., Sholikah, U., Shovitri, M., Wilujeng, S. A., & Pandebesie, E. S. 2014. Bioremoval of Chromium, Copper and Cadmium by Bacillus cereus in simulated electroplating wastewater. In Journal of Proceeding Series (Vol. 1).
Verma, M., Lee, I., Sharma, S., Kumar, R., Kumar, V., & Kim, H. 2021. Simultaneous removal of heavy metals and ciprofloxacin micropollutants from wastewater using ethylenediaminetetraacetic acid-functionalized ?-cyclodextrin-chitosan adsorbent. ACS Omega, 6(50), 34624–34634. https://doi.org/10.1021/acsomega.1c05015
Wang, W., Jiang, F., Wu, F., Li, J., Ge, R., Li, J., Tan, G., Pang, Y., Zhou, X., Ren, X., Fan, B., & Lyu, J. 2019. Biodetection and bioremediation of copper ions in environmental water samples using a temperature-controlled, dual-functional Escherichia coli cell. Applied Microbiology and Biotechnology, 103(16), 6797–6807. https://doi.org/10.1007/s00253-019-09984-9
Wanyonyi, W. C., Onyari, J. M., Shiundu, P. M., & Mulaa, F. J. 2017. Biodegradation and detoxification of malachite green dye using novel enzymes from bacillus cereus strain KM201428: kinetic and metabolite analysis. Energy Procedia, 119, 38–51. https://doi.org/10.1016/j.egypro.2017.07.044

Most read articles by the same author(s)

<< < 1 2