Biological control of maize downy mildew with the antagonistic bacterial consortium

##plugins.themes.bootstrap3.article.main##

ENDANG MUGIASTUTI
https://orcid.org/0000-0003-3689-8302
ABDUL MANAN
https://orcid.org/0000-0002-3455-4859
LOEKAS SOESANTO
https://orcid.org/0000-0002-6501-4177

Abstract

Abstract. Mugiastuti E, Manan A, Soesanto L. 2023. Biological control of maize downy mildew with the antagonistic bacterial consortium. Biodiversitas 24: 4644-4650. Downy mildew is one of the main diseases of maize, which is a limiting factor for maize production in Indonesia. With a consortium of maize-indigenous antagonist bacteria, biological control is expected to reduce downy mildew. The aim of this research was to determine the ability of three antagonistic bacteria Bacillus amyloliquefaciens BB.R3, Bacillus subtilis BB.B4, Pseudomonas putida BB.R1 in suppressing spore germination of Peronoslerospora spp., and to evaluate the ability of their consortium in controlling downy mildew and promote the growth of maize. Based on the research results, antagonistic bacteria B. amyloliquefaciens BB.R3, B. subtilis BB.B4, and P. putida BB.R1 were able to suppress spore germination by 76.68-100%. The bacterial consortium of Bacillus subtilis BB. B4 + Pseudomonas putida BB.R1 was the best consortium of antagonistic bacteria and had the most potential to developed as a downy mildew control and promote the growth of maize. This bacterial consortium delayed the incubation period, lowered the intensity of the disease (85.77%) and AUDPC (83.02%), increased the content of phenols (tannins, glycosides, and saponins), and promoted plant growth (plant height 138.10%, the number of leaves 102.29%, root length 219.89%, fresh plant weight 1091.81%, and dry plant weight 1077.04%) compared to the control. Treatment with antagonistic bacteria showed better results compared to the fungicide metalaxyl. Based on the results, applying antagonistic bacteria consortium is a potential strategy to control maize downy mildew.

##plugins.themes.bootstrap3.article.details##

References
Ahanger R, Bhatand HA, Dar NA. 2014. Biocontrol agents and their mechanism in plant disease management. Sciencia Acta Xaveriana An International Science Journal 5(1): 47–58.
Ahemad M, Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University – Science 26: 1–20. https://doi.org/10.1016/j.jksus.2013.05.001.
Ahmadzadeh M, Tehrani AS. 2009. Evaluation of fluorescent pseudomonad for plant growth promotion, antifungal activity against Rhizoctonia solani on common bean, and biocontrol potential. Biological Control: Theory and Applications in Pest Management 48(2): 101–107.
Ananta PS, Deventhiran M, Saravanan P, Anand D, Rajarajan S. 2016. A comparative GC-MS analysis of bacterial secondary metabolites of Pseudomonas species. The Pharma Innovation Journal 5(4): 84–89.
Anugrah FM, Widiantini F. 2018. The effect of metalaxyl, fenamidone, and dimetomorf fungicide towards conidia Peronosclerospora spp. isolated from Klaten. Jurnal Penelitian Saintek (23)1: 21-31.
Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P. 2009. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microbial Cell Factories 8(63):1-12. doi:10.1186/1475-2859-8-63
Arslan S, Lo?o?lu E, Öktemer A. 2006. Antimicrobial activity studies on some piperidine and pyrrolidine substituted halogenobenzene derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry 21(2): 211–214. https://doi.org/10.1080/14756360600563063.
Barbosa RFC, Pfenning LH, Casela CR. 2006. Peronosclerospora sorghi, the causal agent of sorghum downy mildew. Fitopatologia Brasileira 31(2):119-132
Burbank L, Mohammadi M, Roper MC. 2015. Siderophore-mediated iron acquisition influences motility and is required for full virulence of the xylem-dwelling bacterial phytopathogen Pantoea stewartii subsp. stewartii. Applied and Environmental Microbiology 81(1): 139–148. https://doi.org/10.1128/AEM.02503-14
Burhanuddin. 2009. Metalaxyl fungicides are not effective in suppressing downy mildew (Peronosclerospora maydis) in West Kalimantan and its control alternatives. Proceedings of the National Seminar on Cereals 2009. Pp. 395-399.
Cavaglieri L, Orlando J, Rodríguez MI, Chulze S, Etcheverry M. 2005. Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Research in Microbiology 156(5–6): 748–754. https://doi.org/10.1016/j.resmic.2005.03.001
Chairul. 2003. Identifikasi secara cepat bahan bioaktif pada tumbuhan di lapangan. Berita Biol. 6(4):621–630.
Dhayanithi V, Syed SS, Kumaran K, Sankar KRJ, Ragavan RV, Goud PSK, Kumari NS, Pati HN. 2011. Synthesis of selected 5-thio- substituted tetrazole derivatives and evaluation of their antibacterial and antifungal activities. Journal of the Serbian Chemical Society 76(2): 165–175. https://doi.org/10.2298/JSC090421001D.
Farida N, Sudiono, Aeny TN, Hidayat KF, Suharjo R. 2022. The effect of Trichoderma sp. spore density and molasse concentration on downy mildew intensity and plant growth of maize (Zea mays L.) Jurnal Agrotek Tropika 10(1):35–42.
Flury P, Vesga P, Péchy-Tarr M, Aellen N, Dennert F, Hofer N, Kupferschmied KD, Kupferschmied P, Metla Z, Ma Z, Siegfried S, de Weert S, Bloemberg G, Höfte M, Keel CJ, Maurhofer M. 2017. Antimicrobial and insecticidal: Cyclic lipopeptides and hydrogen cyanide produced by plant-beneficial Pseudomonas strains CHA0, CMR12a, and PCL1391 contribute to insect killing. Frontiers in Microbiology, 8(Feb). https://doi.org/10.3389/fmicb.2017.00100
Ganeshan G, Kumar MA. 2005. Pseudomonas fluorescens is a potential bacterial antagonist to control plant diseases. Journal of Plant Interactions 1(3):23–134. https://doi.org/10.1080/17429140600907043
Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V. 2015. Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. Journal of Microbial & Biochemical Technology 7(2):96–102. https://doi.org/10.4172/1948-5948.1000188
Hassan SE. 2017. Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. Journal of Advanced Research 8(6):687–695. https://doi.org/10.1016/j.jare.2017.09.001
Heydari A, Pessarakli M. 2010. A review on biological control of fungal plant pathogens using microbial antagonists. Journal of Biological Sciences, 10(4):273–290. https://doi.org/10.3923/jbs.2010.273.290
Isakeit T, J Jaster. 2005. Texas has a new pathotype of Peronosclerospora sorghi the cause of sorghum downy mildew. Plant Disease 89:529
Jatnika W, Abdul LA, Luqman QA. 2013. Effect of application of Bacillus sp. and Pseudomonas sp. against the development of downy mildew caused by the fungus Peronosclerospora maydis on corn plants. HPT 1(4):19-29.
Jeger MJ, Viljanen-Rollinson SLH. 2001. The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theoretical and Applied Genetics 102(1): 32–40. https://doi.org/10.1007/s001220051615
Kai M, Haustein M, Molina F. 2009. Bacterial volatiles and their action potential. Microbiology and Biotechnology 81:1001–1012. https://doi.org/10.1007/s00253-008-1760-3
Khoiri S, Abdiatun, Muhlisa K, Amzeri K, Megasari D. 2021. The incidence and severity of downy mildew disease on local madurese maize crops in Sumenep District, East Java, Indonesia. Agrologia 10(1): 17-24.
Mugiastuti E. 2022. Control of Maize Sheath Blight with Rhizosphere and Endophytic Bacteria. [Disertation]. Faculty of Agriculture, Jenderal Soedirman University, Purwokerto [Indonesia].
Mugiastuti E, Suprayogi, Prihatiningsih N, Soesanto L. 2020. Short communication: isolation and characterization of the endophytic bacteria, and their potential as maize disease control. Biodiversitas 21(5): 1809-1815
Muis A, Djaenuddin N, Nonci, N. 2015. Virulence test of several isolates of putative antagonist bacteria Bacillus subtilis as a biocontrol agent for maize plant diseases. Cereal Crop Research Bulletin, 1(1):8–15.
Muis A, Pabendon MB, Nonci N, Waskito WPS. 2013. Genetic variability of downy mildew pathogens based on SSR marker analysis. Penelitian Pertanian Tanaman Pangan 32(3): 139-147.
Muis A, Djaenuddin N, Nonci N. 2016. Evaluation of five inner carriers and Bacillus subtilis formulation to control banded leaf and sheath blight (Rhizoctonia solani Kuhn). Jurnal Hama dan Penyakit Tumbuhan Tropika 15(2):164. https://doi.org/10.23960/j.hptt.215164-169
Olanrewaju OS, Glick BR, Babalola, OO. 2017. Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology 33(11):1–16. https://doi.org/10.1007/s11274-017-2364-9
Pajrin J, Panggesso J, Rosmini. 2013. Endurance tests several varieties of maize (Zea mays l.) against downy mildew disease intensity (Peronosclerospora maydis). e-J. Agrotekbis 1 (2): 135-139
Pal KK, McSpadden Gardener B. 2006. Biological control of plant pathogens. The Plant Health Instructor:1–25. https://doi.org/10.1094/PHI-A- 2006-1117-02.
Raaijmakers JM, Weller DM. 1998. Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in Take-all decline soils. Molecular Plant-Microbe Interactions 11(2): 144–152. https://doi.org/10.1094/MPMI.1998.11.2.144
Rella A, Faarnoud AM, Poeta MD. 2016. Plasma membrane lipids and their role in fungal virulence. Prog.Lipid Res. 61:63–72.
Roca-Couso R, Flores-Félix JD, Rivas R. 2021. Mechanisms of action of microbial biocontrol agents against Botrytis cinerea. Journal of Fungi, 7(12), 1–26. https://doi.org/10.3390/jof7121045
Rustiania US, Sinaga MS, Hidayati SH, Wiyono S. 2015. Ecological characteristic of Peronosclerospora maydis in Java, Indonesia. International Journal of Sciences: Basic and Applied Research (IJSBAR) 19 (1): 159-167.
Saeed Q, Xiukang W, Haider FU, Ku?erik J, Mumtaz MZ, Holatko J, Naseem M, Kintl, A., Ejaz, M., Naveed, M., Brtnicky, M. & Mustafa, A. (2021). Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: A comprehensive review of effects and mechanisms. International Journal of Molecular Sciences, 22(19). https://doi.org/10.3390/ijms221910529
Sharma A, Diwevidi VD, Singh S, Pawar KK, Jerman M, Singh LB, Singh S, Srivastawa D. 2013. Biological control and its important in agriculture. International Journal of Biotechnology and Bioengineering Research 4(3): 175–180. Retrieved from http://www.ripublication.com/
Singh PP, Shin YC, Park CS, Chung YR. 1999. Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology: 89(1):92–99. https://doi.org/10.1094/PHYTO.1999.89.1.92
Soenartiningsih, Talanca A, Juniarsih, Yasin HG, 2008. Testing of several varieties/lines of corn against sheath blight and downy mildew. Balai Penelitian Tanaman Serealia. Maros.
Soesanto, L. 2000. Ecological and Biological Control of Verticillium dahliae. Wageningen University, Wageningen.
Suharjo R, Swibawa G, Prasetyo, Fitriana Y, Danaatmadja Y, Budiawan A, Roberts S, Noorhajati N, Amad M, Thines M. 2020. Peronosclerospora australiensis is a synonym of P. maydis, which is widespread on Sumatra, and distinct from the most prevalent Java maize downy mildew pathogen. Mycological Progress 19:1309–1315
Surya M, Thiruvudainambi S, Ebenezar EG, Vanniarajan C, Kumutha, K. 2020. GC-MS Analysis of antimicrobial compounds produced by Bacillus spp. against rice sheath rot pathogen Sarocladium oryzae. Journal of Entomology and Zoology Studies 8(1): 1417-1423 8(1):1417–1423.
Suryadi Y, Susilowati DN, Kadir TS, Ruskandar A. 2012. Seed-dipping application of local endophytic bacterial consortium against bacterial leaf blight of rice. Jurnal Agrotropika 17(1): 7-13
Suryadi Y, Susilowati DN, Akhdiya A, Kadir TS, Baskoro. 2013. Efficacy of consortium bacteria for control rice diseases under system of rice intensification (SRI) in West Java-Indonesia. Albanian J. Agric. Sci. 12 (1): 143-147
Talanca AH, Burhanuddin, Tenri Rawe, A. 2011. Test of fungus resistance (Peronosclerospora maydis) to saromil 35 SD (b.a. Metalaxyl). Proceedings of Scientific Seminar and Annual Meeting of XXI, PEI, PFI, Balitsereal and Disbun Sulsel, 7 Juni 2011. Pp. 119-122.
Veliz EA, Martínez-Hidalgo P, Hirsch AM. 2017. Chitinase-producing bacteria and their role in biocontrol. AIMS Microbiology, 3(3): 689–705. https://doi.org/10.3934/microbiol.2017.3.689
Weller DM. 2007. Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology, 97(2): 250–256. https://doi.org/10.1094/PHYTO-97-2-0250
Wijayanti KS, Rahardjo BT, Himawan T. 2017. Effect of rhizobacteria in content of salicylic acid and total phenol of kenaf against nematode infections. Buletin Tanaman Tembakau, Serat & Minyak Industri 9(2): 54-63. DOI: 10.21082/btsm.v9n2.2017.53–62
Yasmin S, Hafeez FY, Mirza MS, Rasul M, Arshad HMI, Zubair M, Iqbal M. 2017. Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front Microbiol., 8:1895. https://doi.org/10.3389/fmicb.2017.01895.