Antibacterial activity of sponge-associated bacteria from Torosiaje marine area, Gorontalo, Indonesia

##plugins.themes.bootstrap3.article.main##

YULIANA RETNOWATI
ABUBAKAR SIDIK KATILI

Abstract

Abstract. Retnowati Y, Katili AS. 2023. Antibacterial activity of sponge-associated bacteria from Torosiaje marine area, Gorontalo, Indonesia. Biodiversitas 24: 1151-1156. The marine sponge is a member of the Porifera class animal group that has the potential to produce secondary metabolites with various biological activities. These marine animals are often associated with various bacteria from the actinomycetes and non-actinomycetes groups. Currently, information about bacteria associated with sponges in Gorontalo coastal waters is still very limited. Bacteria associated with organisms from the marine environment have been explored as producers of new types of bioactive compounds. Exploring bacteria associated with sponges in the coastal waters of Gorontalo can potentially find new types of antibiotics. The aim of this study was to reveal the diversity of antibiotic-producing bacteria associated with sponges in the Torosiaje coastal area, Gorontalo. The research was carried out in the Torosiaje marine area as sponge sampling locations, including seawater physicochemical properties measurement. The sponges were identified based on morphological characteristics. The sponge-associated bacteria were isolated and screened for antibacterial potential against Escherichia coli and Staphylococcus aureus. The potential sponge-associated bacteria were identified based on a molecular approach. The result showed that a total of 10 sponge members of Demospongiae class. All ten sponge-associated bacteria were non-actinomycetes bacterial isolates that showed similar morphological characteristics. Only isolate ILM-1 associated with Coelocarteria singaporensis showed antibacterial potential in broad-spectrum mode against Escherichia coli and Staphylococcus aureus. The ILM-1 isolate was identified as Vibrio diabolicus closely related to Vibrio diabolicus strain CW-9-11-1 with a similarity index of 99.70%.

##plugins.themes.bootstrap3.article.details##

References
Abdelmohsen UR. 2010. Isolation, phylogenetic analysis and anti-infective activity screening of marine sponge associated actinobacteria. Mar Drugs 8:399-412
Abdelmohsen UR, Yang C, Horn H, Hajjar D, Ravasi T, and Hentschel U. 2014. Actinomycetes from Red Sea Sponges: Sources for Chemical and Phylogenetic Diversity. Mar Drugs. 12(5): 2771–2789.
Adegboye MF and Babalola OO.2013. Actinomycetes: a yet inexhausative source of bioactive secondary metabolites. Microbial pathogen and strategies for combating them: science, technology and eductaion, (A.Mendez-Vila, Ed.). Pp. 786 – 795.
Agrawal S, Adholeya A, and Deshmukh SK. 2016. The Pharmacological Potential of Non-ribosomal Peptides from Marine Sponge and Tunicates. Front. Pharmacol., https://doi.org/10.3389/fphar.2016.00333.
Almaary KS, Alharbi NS, Kadaikunnan S, Rajivgandhi G, Ramachandran G, Kanisha CC, Murugan M, Alanzi KF, Manoharan N. 2021. Anti-bacterial effect of marine sea grasses mediated endophytic Actinomycetes against K. pneumoniae. Journal of King Saud University - Science. 33 (6).
Amina M and Al Musayeib NM. 2017. Biological and Medicinal Importance of Sponge. In Biological Resources of Water, Edited by Sajal Ray.
Anjum K, Abbas SQ, Shah SAA, Akhter N, Batool S, and ul Hassan SS. 2016 Marine Sponges as a Drug Treasure. 24(4): 347–362.
Azman, A. S., I. Othman, S. S. Velu, K. G. Chan, and L. H. Lee. 2015. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity. Front Microbiol., 6:856.
Baig U, Dahanukar N, Shintre N, Holkar K, Pund A, Lele U, Gujarathi T, Patel K, Jakati A, Singh R, Vidwans H, Tamhane V, Deshpande N, Watve M. 2021. Phylogenetic diversity and activity screening of cultivable Actinobacteria isolated from marine sponges and associated environments from the western coast of India. Access Microbiol. 21;3(9):000242.
Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, 2016. Taxonomy, physiology, and natural products of actinobacteria. Microbiol. Mol. Biol. Rev. 25, 80, 1–43. doi: 10.1128/MMBR.00019-15
Beepat SS, Appadoo C, Marie DEP, Sadally SB, Paula J, Sivakumar K, Rao RR, Salah M. 2016. First records of sponge-associated Actinomycetes from two coastal sponges from Mauritius WIO Journal of Marine Science 15 (1) 2016 31-38.
Berdy, J. 2005. Bioactive Microbial Metabolites. Journal Antibiotics., 58(1):1–26
Calcabrini C , Elena Catanzaro E, Anupam Bishayee A, Eleonora Turrini E , Carmela Fimognari C. 2017. Marine Sponge Natural Products with Anticancer Potential: An Updated Review Mar Drugs 15(10):310.
Chairman K, Aja R, Alagumuthu G. 2010. Cytotoxic and antioxidant activity of selected marine sponges. Asian Pacific Journal of Tropical Disease 2(3):234–238.
Chen J, Xu L, Zhou Y, Han B. 2021. Natural Products from Actinomycetes Associated with Marine Organisms. Mar Drugs 19(11):629.
Choi K, Lim HK, Oh SR, Chung WH, and Jung J. 2017. Anticancer Effects of the Marine Sponge Lipastrotethya sp. Extract on Wild-Type and p53 Knockout HCT116 Cells. Hindawi. https://doi.org/10.1155/2017/7174858
Eltamany EE, Radwan MM, Ibrahim AK, ElSohly M, Hassanean HA, Ahmed SA. 2014. Antitumor metabolites from the Red Sea sponge Spheciospongia vagabunda. Planta Med. 80 - PB5.
Gebreyohannes, G., F. Moges, S. Sahile, and N. Raja. 2013. Isolation and characterisation of potential antibiotic producing actinomycetes from water and sediments of Lake Tana, Ethiopia. Asian Pac J Trop Biomed., 3(6): 426–435.
Gong, B., S. Chen, W. Lan, Y. Huang, and X. Zhu. 2018. Antibacterial and antitumor potential of actinomycetes isolated from mangrove soil in the Maowei sea of the Southern coast of China. Iran. J. Pharm. Res., 17(4):1339-1346.
Hamoda AM, Fayed B, Ashmawy NS, El-Shorbagi ANA, RHamdy R, and Soliman SSM. 2021. Marine Sponge is a Promising Natural Source of Anti-SARS-CoV-2 Scaffold . Front. Pharmacol. https://doi.org/10.3389/fphar.2021.666664.
Hort MA, Júnior FMRS, Garcia EM, Peraza GG, Soares A, Lerner C, and Muccillo-Baisch AL. 2018. Antinociceptive and Anti-inflammatory Activities of Marine Sponges Aplysina Caissara, Haliclona sp. and Dragmacidon Reticulatum. Biological and Applied Sciences. https://doi.org/10.1590/1678-4324-2018180104.
Jiang, Z., L. Tuo, D. L. Huang, I. A. Osterman, A. P. Tyurin, S. W. Liu, D. A. Lukyanov, P. V. Sergiev, O. A. Dontsova, V. A. Korshun, F. N. Li, and C. H. Sun. 2018. Diversity, novelty, and antimicrobial activity of endophytic actinobacteria from mangrove plants in Beilun Estuary National Nature Reserve of Guangxi, China. Front Microbiol., 9:868.
Jose, P. A and S. R. D. Jebakumar. 2012. Phylogenetic diversity of actinomycetes culuterd from coastalmultipond solar saltern in Tuticorin, India. Aquat. Biosyst., 8(23):1-9.
Khan ST and Shin-ya K. 2011. Streptomyces associated with a marine sponge Haliclona sp.; biosynthetic genes for secondary metabolites and products. Environmental Microbiology (2011) 13(2), 391–403
Kiran GS, Sekar S, Ramasamy P, Thinesh T, Hassan S, Lipton AN, Ninawe AS, Selvin J. 2018. Marine sponge microbial association: Towards disclosing unique symbiotic interactions. j.marenvres. 40:169-179.
Li C-Q, Ma Q-Y, Gao X-Z, Wang X, and Zhang B-L. 2021. Research Progress in Anti-Inflammatory Bioactive Substances Derived from Marine Microorganisms, Sponges, Algae, and Corals. Mar. Drugs 2021, 19, 572. https://doi.org/10.3390/md19100572.
Liu T, Wu S, Zhang R, Wang D, Chen J, Zhao J. 2019. Diversity and antimicrobial potential of Actinobacteria isolated from diverse marine sponges along the Beibu Gulf of the South China Sea. FEMS Microbiol Ecol. 1;95(7)
Lu S, Wang J, Sheng R, Fang Y, Guo R. 2020. Novel Bioactive Polyketides Isolated from Marine Actinomycetes: An Update Review from 2013 to 2019. Chemistry and Biodiversity:17(12).
Pita L, Turon X, López-Legentil S, and Erwin PM. 2013. Host rules: spatial stability of bacterial communities associated with marine sponges (Ircinia spp.) in the Western Mediterranean Sea. FEMS Microbiol. Ecol. 86, 268–276. doi: 10.1111/1574-6941.12159.
Pita L, Fraune S, and Hentschel U. 2016. Emerging Sponge Models of Animal-Microbe Symbioses. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.02102
Retnowati Y, Sembiring L, Moeljopawiro S, Djohan TS, and Soetarto ES. 2017. Diversity of antibiotic-producing Actinomycetes in mangrove forest of Torosiaje, Gorontalo, Indonesia. BIODIVERSITAS 18(3) Pages: 1453-1461.
Retnowati Y, Djohan TS, Moeljopawiro S, and Soetarto ES. 2018. Antimicrobial activities of actinomycete isolates from rhizospheric soils in different mangrove forest of Torosiaje, Gorontalo, Indonesia. Biodiversitas. 19(6).
Rosmine, E., and S. A. Varghese. 2016. Isolation of actinomycetes from mangrove and estuarine sediments of Cochin and screening for antimicrobial activity. J. Coast. Life. Med., 4(3):207-210.
Ruocco N, Esposito E, Zagami G, Bertolino M, Matteo SD, Sonnessa M, Andreani F, Crispi S, Zupo V, and Costantini M. 2021; Microbial diversity in Mediterranean sponges as revealed by metataxonomic analysis. Sci Rep. 11: 21151.
Seradj H, Moein M, Eskandari M, Maaref F. 2012. Antioxidant Activity of Six Marine Sponges Collected from the Persian Gulf. Iranian Journal of Pharmaceutical Sciences Autumn 2012: 8(4): 249-255.
Shady NH , El-Hossary EM, Fouad MA, Gulder TAM, Kamel MS, Abdelmohsen UR. 2017. Bioactive Natural Products of Marine Sponges from the Genus Hyrtios Molecules. 22(5):781.
Shamikh YI, El Shamy AA, Gaber Y, Abdelmohsen UR, Madkour HA, Horn H, Hassan HM, Elmaidomy AH, Alkhalifah DHM, and Hozzein WN. 2020. Actinomycetes from the Red Sea Sponge Coscinoderma mathewsi: Isolation, Diversity, and Potential for Bioactive Compounds Discovery. Microorganisms 2020, 8, 783.
Sharma, D., T. Kaur, B. S. Chadha, and R. K. Manhas. 2011. Antimicrobial activity of actinomycetes against multidrug resistant Staphylococcus aureus, E. coli and various other pathogens. Trop. J. Pharm. Res., 10(6): 801-808.
Steinert G, Taylor MW, Deines P, Simister R L, de Voogd NJ, Hoggard M, (2016). In four shallow and mesophotic tropical reef sponges from Guam the microbial community largely depends on host identity. PeerJ. 4:e1936. doi: 10.7717/peerj.1936.
Su P, Wang DX, Ding SX, and Zhao J. 2014. Isolation and diversity of natural product biosynthetic genes of cultivable bacteria associated with marine sponge Mycale sp. from the coast of Fujian, China. Can J Microbiol. 60(4):217-25.
Sun W, Zhang F, He L, Karthik L, and Li Z. 2015. Actinomycetes from the South China Sea sponges: isolation, diversity, and potential for aromatic polyketides discovery. Front Microbiol. 2015; 6: 1048.
Supong K, Suriyachadkun C, Pittayakhajonwut P, Suwanborirux K, and Thawai C. 2013. Micromonospora spongicola sp. nov., an actinomycete isolated from a marine sponge in the Gulf of Thailand. The Journal of Antibiotics (2013) 66, 505–509.
Tiwari K., and R. K. Gupta. 2013. Diversity and isolation of rare actinomycetes: an overview. Critical Reviews in Microbiology, 39(3):256–294.
Weigel BL and Erwin PM. (2016). Intraspecific variation in microbial symbiont communities of the sun sponge, Hymeniacidon heliophila, from intertidal and subtidal habitats. Appl. Environ. Microbiol. 82, 650–658. doi: 10.1128/AEM.02980-15.
Xi L et al., 2012. Diversity and biosynthetic potential of culturable actinobacteria associated eight marine sponges in the China seas. Int J Mol Sci 13:5917-593.
Ye J, Zhou F, Al-Kareef AMQ, and Wang H. 2015; Anticancer agents from marine sponges. J Asian Nat Prod Res. 17(1):64-88.
Haris A, Nurafni, D.N Lestari, dan M. Hasania. 2019. Keanekaragaman dan Komposisi Jenis Sponge (Porifera: Demospongiae) di Reef Flat Pulau Barranglompo. Torani. Volume 3 (1) December 2019: 26-36.
Wilkinson C. R., and Fay P. 1979. Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature 279, 527–529. doi: 10.1038/279527a0.
Hoffmann F, Larsen O, Thiel V, Rapp, HT, Pape, T, Michaelis, W. 2005. An anaerobic world in sponges. Geomicrobiol J. 22, 1–10. doi: 10.1080/01490450590922505.
Graça A.P, Viana F, Bondoso J, Correia M I., Gomes, L., Humanes, M. 2015. The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge Erylus deficiens (Astrophorida, Geodiidae). Front. Microbiol. 6:389. doi: 10.3389/fmicb.2015.00389.
Esteves, A. I., Cullen, A., and Thomas, T. 2017. Competitive interactions between sponge-associated bacteria. FEMS Microbiol. Ecol. 93:fix0008. doi: 10.1093/femsec/fix0008.
Engel, S., and Pawlik, J. R. 2000. Allelopathic activities of sponge extracts. Mar. Ecol. Prog. Ser. 207, 273–281. doi: 10.3354/meps207273.
Sun, W., Dai, S., Jiang, S., Wang, G., Liu, G., Wu, H. 2010. Culture-dependent and culture-independent diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve from the South China Sea. Antonie Van Leeuwenhoek 98, 65–75. doi: 10.1007/s10482-010-9430-8.
Moitinho-Silva, L., Nielsen, S., Amir, A., Gonzalez, A., Ackermann, G., Cerrano, C. 2017. The sponge microbiome project. Gigascience 6:gix077. doi: 10.1093/gigascience/gix077.
Yang, J., Sun, J., Lee, O. O., Wong, Y. H., and Qian, P. Y. 2011. Phylogenetic diversity and community structure of sponge-associated bacteria from mangroves of the Caribbean Sea. Aquat. Microb. Ecol. 62, 231–240. doi: 10.3354/ame01473
Simister, R. L., Deines, P., Botté, E. S., Webster, N. S., and Taylor, M. W. 2012. Sponge specific clusters revisited: a comprehensive phylogeny of sponge associated microorganisms. Environ. Microbiol. 14, 517–524. doi: 10.1111/j.1462-2920.2011.02664.x.
Kuo, J., Yang, Y. T., Lu, M. C., Wong, T. Y., Sung, P. J., and Huang, Y. S. 2019. Antimicrobial activity and diversity of bacteria associated with Taiwanese marine sponge Theonella swinhoei. Ann. Microbiol. 69, 253–265. doi: 10.1007/s13213-018-1414-3.
Moreno-Pino, M., Cristi, A., Gillooly, J. F., and Trefault, N. 2020. Characterizing the microbiomes of Antarctic sponges: a functional metagenomic approach. Sci. Rep. 10, 1–12. doi: 10.1038/s41598-020-57464-2.
SABHAPATHY MK, H. SASAK, K. NAKAJIMA, K. NAGATA, and S. NAGATA. 2005. Inhibitory Activities of Surface Associated Bacteria Isolated from the Marine Sponge Pseudoceratina purpurea. Microbes and environments. Vol. 20, No. 3, 178–185, 2005.
Turner J, J.J. Tallman, A. Macias, L.J. Pinnell, N.C. Elledge, D.N Azadani, WB Nilsson, R.N. Paranjpye, EV Armbrust, and M.S. Strom. 2018. Comparative Genomic Analysis of Vibrio diabolicus and Six Taxonomic Synonyms: A First Look at the Distribution and Diversity of the Expanded Species. Front Microbiol. 9: 1893.