Revealing the genetic diversity of Sumbawa endemic horse using microsatellite-based DNA fingerprint

##plugins.themes.bootstrap3.article.main##

AKHMAD SUKRI
IKA NURANI DEWI
SRI NOPITA PRIMAWATI
I GDE ADI SURYAWAN WANGIYANA
ZAINUL MUTTAQIN
ARIS WINAYA4

Abstract


Abstract. Sukri A, Dewi IN, Primawati SB, Wangiyana IGAS, Muttaqin Z, Winaya A. 2022. Revealing the genetic diversity of Sumbawa endemic horse using microsatellite-based DNA fingerprintBiodiversitas 23: 4153-4159Sumbawa horse (Equus caballus) is a genetic resource that must be preserved. Sumbawa horses have a significant economic, social, and cultural role. Information on the genetic status of the Sumbawa horse is needed as a step in developing a long-term conservation strategy. Therefore, this study aims to reveal the genetic diversity of the Sumbawa endemic horse using a microsatellite-based DNA fingerprint. DNA isolation was conducted from horse blood samples. Blood samples were taken from two horse farms with 24 individual horses from two different populations, namely Lalar and Liang,West Sumbawa District, Indonesia. Blood was taken from the jugular vein and collected by a qualified veterinarian from the Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika. A total of 4 microsatellite primers were used in this study, INRA032, HEL09, CA425, and AHT4. This study revealed that the genetic diversity of horses in the Lalar population was higher than Liang. A greater number of alleles reinforces this; higher number and frequency of bands; and the presence of specific bands that indicate unique alleles. This research shows that the Sumbawa horse is unique from other horse breeds in the world. This is evidenced by the lower number of alleles per locus (Na) with a maximum number of two alleles per locus. Sumbawa horses have higher observed heterozygosity (Ho) than expected heterozygosity (He), with a Ho value less than 0.5. Analysis of Molecular Variance result has shown that variation within the population was higher than among the population. This is presumably due to the high gene flow in both horse populations caused by inbreeding. In general, AHT4 primers had the best ability to reveal the genetic diversity of Sumbawa horses with the highest Shannon's information index compared to other markers.


##plugins.themes.bootstrap3.article.details##

References
Abdulrazaq, H. S., Saeed, C. H., & Qader, N. H. (2019). Genetic Diversity Among horse Lines in Erbil Region Using RAPD Markers. Zanco Journal of Pure and Applied Sciences, 31(3), 39–44. https://doi.org/10.21271/zjpas.31.3.6
Agung, P. P., Saputra, F., Zein, M. S. A., Wulandari, A. S., Putra, W. P. B., Said, S., & Jakaria, J. (2019). Genetic diversity of Indonesian cattle breeds based on microsatellite markers. Asian-Australasian Journal of Animal Sciences, 32(4), 467–476. https://doi.org/10.5713/ajas.18.0283
Al-Faisal, A. J., Mohamed, A.-R. M., Jaayid, T. A., Abbas, C., & Al-Faisal, J. (2019). DNA fingerprinting of the carangid fish species from the Iraqi marine waters by using RAPD technique. ~ 422 ~ International Journal of Fisheries and Aquatic Studies, 7(4), 422–427. www.fisheriesjournal.com
Asidah, E. (2020). Pengembangan Pariwisata Budaya Pacuan Kuda Dalam Meningkatkan Kesejahteraan Masyarakat Desa Brang Kolong Kecamatan Plampang Kabupaten Sumbawa -NTB. 1(2), 105–112.
Asif, M., Mirza, J. I., & Zafar, Y. (2008). High resolution metaphor agarose gel electrophoresis for genotyping with microsatellite markers. Pakistan Journal of Agricultural Sciences, 45(1), 75–79.
Benahamadi, M. E. A., Berber, N., Benyarou, M., Ameur, A. A., Haddam, H. Y., Piro, M., & Gaouar, S. B. S. (2020). Molecular characterization of eight horse breeds in Algeria using microsatellite markers. Biodiversitas, 21(9), 4107–4115. https://doi.org/10.13057/biodiv/d210923
Carvalho, P. R., Munita, C. S., & Lapolli, A. L. (2019). Validity studies among hierarchical methods of cluster analysis using cophenetic correlation coefficient. Brazilian Journal of Radiation Sciences, 7(2A), 1–14. https://doi.org/10.15392/bjrs.v7i2a.668
Choi, H. J., Ko, M., & Ahn, J. H. (2008). DNA fingerprinting using PCR: A practical forensic science activity. Journal of Biological Education, 43(1), 41–44. https://doi.org/10.1080/00219266.2008.9656148
Cozzi, M. C., Valiati, P., Longeri, M., Ferreira, C., & Ferreira, S. A. (2022). Genetic variability trend of lusitano horse breed reared in Italy. Animals, 12(1), 1–11. https://doi.org/10.3390/ani12010098
Donnik, I. M., Krivonogova, A. S., Isaeva, A. G., Koshchaev, A. G., Neverova, O. P., & Bykova, O. A. (2017). Productivity and health markers for large cattle. International Journal of Green Pharmacy, 11(3), S620–S625.
Dorji, J., Tamang, S., Tshewang, T., Dorji, T., & Dorji, T. Y. (2018). Genetic diversity and population structure of three traditional horse breeds of Bhutan based on 29 DNA microsatellite markers. PLoS ONE, 13(6), 1–11. https://doi.org/10.1371/journal.pone.0199376
Driskill, M., Pardee, K., Hummer, K. E., Zurn, J. D., Amundsen, K., Wiles, A., Wiedow, C., Patzak, J., Henning, J. A., & Bassil, N. V. (2022). Two fingerprinting sets for Humulus lupulus based on KASP and microsatellite markers. In Plos One (Vol. 17, Issue 4). https://doi.org/10.1371/journal.pone.0257746
El-Mouhamady, A. A., Abdel-Rahman, H. M., Rizkalla, A. A., & El-Metwally, M. A. (2019). Assessment of water stress tolerance in wheat genotypes based on half diallel analysis and DNA fingerprinting. Pakistan Journal of Biological Sciences, 22(3), 103–116. https://doi.org/10.3923/pjbs.2019.103.116
Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics, 1, 117693430500100. https://doi.org/10.1177/117693430500100003
Fadhil, I. A., Singh, R. P., & Dakheel, M. H. (2013). Differentiation and identification of biological samples obtained from indian cattle using dna fingerprinting technology ( Minisatellites " VNTR ", AFLP and RAPD analysis ). 3(1), 3313–3316.
Farrag, S. A., Tanatarov, A. B., & Soltan, M. E. (2010). Using of DNA fingerprinting in poultry research. International Journal of Poultry Science, 9(5), 406–416. https://doi.org/10.3923/ijps.2010.406.416
Fiore, M. C., Marchese, A., Mauceri, A., Digangi, I., & Scialabba, A. (2022). Diversity Assessment and DNA-Based Fingerprinting of Sicilian Hazelnut (Corylus avellana L.) Germplasm. Plants, 11, 1–18. https://doi.org/10.3390/plants11050631
Fornal, A., Kowalska, K., Zabek, T., Piestrzynska?kajtoch, A., Musia?, A. D., & Ropka-Molik, K. (2020). Genetic diversity and population structure of polish konik horse based on individuals from all the male founder lines and microsatellite markers. Animals, 10, 1–11. https://doi.org/10.3390/ani10091569
Garkovenko, A. V., Radchenko, V. V., Ilnitskaya, E. V., Koshchaev, A. G., Shchukina, I. V., Bakharev, A. A., & Sukhanova, S. F. (2018). Polymorphism of cattle microsatellite complexes. Journal of Pharmaceutical Sciences and Research, 10(6), 1545–1551.
Gholizadeh, S., Darvishzadeh, R., Abdollahi Mandoulakani, B., Bernousi, I., Alavi, S. R., & Kharabian Masouleh, A. (2012). Molecular Characterization and Similarity Relationships among Flue-Cured Tobacco (Nicotiana tabacum L.) Genotypes Using Simple Sequence Repeat Markers. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40(2), 247–253. https://doi.org/10.15835/nbha4027169
Gómez, M. P., Landi, V., Martínez, A. M., Carpio, M. G., Baena, S. N., Bermejo, J. V. D., do Mar Oom, M., Luis, C., Ouragh, L., & Vega-Pla, J. L. (2017). Genetic diversity of the semi-feral marismeño horse breed assessed with microsatellites. Italian Journal of Animal Science, 16(1), 14–21. https://doi.org/10.1080/1828051X.2016.1241132
Griffiths, L., & Chacon-Cortes, D. (2014). Methods for extracting genomic DNA from whole blood samples: current perspectives. Journal of Biorepository Science for Applied Medicine, 1. https://doi.org/10.2147/bsam.s46573
Hassan, F. ul, Khan, M. S., Saif-Ur-Rehman, M., Raihan Dilshad, S. M., & Ali, M. A. (2019). Genetic diversity among some horse breeds in Pakistan. Pakistan Journal of Zoology, 51(4), 1203–1209. https://doi.org/10.17582/journal.pjz/2019.51.4.1203.1209
Heryani, L. G. S. S., Wandia, I. N., Suarna, I. W., Puja, I. K., Susari, N. N. W., & Agustina, K. K. (2019). Short communication: Molecular characteristic of taro white cattle based on DNA microsatellite markers. Biodiversitas, 20(3), 671–675. https://doi.org/10.13057/biodiv/d200308
ISAG. (2016). Equine Genetics & Thoroughbred Parentage Testing Standardisation Workshop. ISAG Conference, 1–13. http://www.isag.us/Docs/EquineGenParentage2016.pdf
Jamil, S., Shahzad, R., Iqbal, M. Z., Yasmeen, E., & Rahman, S. U. (2021). DNA Fingerprinting and Genetic Diversity Assessment of GM Cotton Genotypes for Protection of Plant Breeder Rights. International Journal of Agriculture and Biology, 25(4), 768–776. https://doi.org/10.17957/IJAB/15.1728
Kasiamdari, R. S., Febiansi, D., Prabowo, H., Aristya, G. R., & Musthofa, A. (2019). Genetic variation and characterization of the sucrose synthase 2 gene (Sus2) in sugarcane based molecular markers. Biodiversitas, 20(11), 3087–3096. https://doi.org/10.13057/biodiv/d201101
Keputusan Menteri Pertanian, Pub. L. No. Nomor 2917/Kpts/OT.140/6/2011 Tentang Penetapan Rumpun Kuda Sumbawa, 1 (2011). http://bibit.ditjenpkh.pertanian.go.id/sites/default/files/Kuda Sumbawa.pdf
Khanshour, A., Conant, E., Juras, R., & Cothran, E. G. (2013). microsatellite analysis of genetic diversity and population structure of Arabian horse population. Journal of Heredity, 104(3), 386–398.
Kim, S. M., Yun, S. W., & Cho, G. J. (2021). Assessment of genetic diversity using microsatellite markers to compare donkeys (Equus asinus) with horses (Equus caballus). Animal Bioscience, 34(9), 1460–1465. https://doi.org/10.5713/AB.20.0860
Krishnamurthy, V., Manoj, R., & Pagare, S. S. (2011). Understanding the basics of DNA fingerprinting in forensic science. Journal of Indian Academy of Oral Medicine and Radiology, 23(4), 613–616. https://doi.org/10.5005/jp-journals-10011-1233
Lapian, H. F. N. (2021). Genetic diversity of horses and chickens – a review. Zootec, 41(2), 569. https://doi.org/10.35792/zot.41.2.2021.37378
Lee, P. Y., Costumbrado, J., Hsu, C. Y., & Kim, Y. H. (2012). Agarose gel electrophoresis for the separation of DNA fragments. Journal of Visualized Experiments, 62, 1–5. https://doi.org/10.3791/3923
Luis-Chincoya, H., Herrera-Haro, J. G., Santacruz-Varela, A., Jerez-Salas, M. P., & Hernández-Garay, A. (2021). Genetic diversity of creole chickens in Valles Centrales, Oaxaca, using microsatellite markers. Revista Mexicana De Ciencias Pecuarias, 12(1), 58–71. https://doi.org/10.22319/RMCP.V12I1.5109
Mahrous, K. F., Hassanane, M., Abdel Mordy, M., Shafey, H. I., & Hassan, N. (2011). Genetic variations in horse using microsatellite markers. Journal of Genetic Engineering and Biotechnology, 9(2), 103–109. https://doi.org/10.1016/j.jgeb.2011.11.001
Malik, M. H., Moaeen-Ud-din, M., Bilal, G., Raja, G. K., Saeed, S., Asad, M. J., Wattoo, F. H., & Muner, R. D. (2022). the Use of Aflp-Pcr Markers To Discriminate Between Red Sindhi and Crossbred Dairy Cattle of Pakistan. Journal of Animal and Plant Sciences, 32(1), 11–18. https://doi.org/10.36899/JAPS.2022.1.0396
Mason, A. S. (2015). Chapter 6. 1245, 77–89. https://doi.org/10.1007/978-1-4939-1966-6
Meirmans, P. G. (2012). AMOVA-based clustering of population genetic data. Journal of Heredity, 103(5), 744–750. https://doi.org/10.1093/jhered/ess047
Moshkelani, S., Rabiee, S., & Javaheri-Koupaei, M. (2011). DNA Fingerprinting of Iranian Arab Horse Using Fourteen Microsatellites Marker. In Research Journal of Biological Sciences (Vol. 6, Issue 8, pp. 402–405).
Mujahid, Mustofa, I., Tehupuring, B. C., Restiadi, T. I., Eliyani, H., & Ratnani, H. (2019). Hubungan Morfometri Ambing Terhadap Nusa Tenggara Barat (Relationship Between Morphometry Of Udder Mares And Milk Production In Bima District West Nusa Tenggara). Ovozoa, 8(2), 1–6.
Navani, N., Jain, P. K., Gupta, S., Sisodia, B. S., & Kumar, S. (2002). A set of cattle microsatellite DNA markers for genome analysis of riverine buffalo (Bubalus bubalis). Animal Genetics, 33(2), 149–154. https://doi.org/10.1046/j.1365-2052.2002.00823.x
Nishikaku, K., Ishikura, R., Ohnuki, N., Polat, M., Aida, Y., Murakami, S., & Kobayashi, T. (2019). Broadly applicable PCR restriction fragment length polymorphism method for genotyping bovine leukemia virus. Journal of Veterinary Medical Science, 81(8), 1157–1161. https://doi.org/10.1292/jvms.18-0603
Parmar, R., Seth, R., & Sharma, R. K. (2022). Genome-wide identification and characterization of functionally relevant microsatellite markers from transcription factor genes of Tea (Camellia sinensis (L.) O. Kuntze). Scientific Reports, 12(1), 1–14. https://doi.org/10.1038/s41598-021-03848-x
Peakall, R., & Smouse, P. E. (2012). GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28(19), 2537–2539. https://doi.org/10.1093/bioinformatics/bts460
Prastyowati, A. (2021). Susu Kuda Liar Sumbawa: Manfaat dan Potensinya sebagai Probiotik. Wartazoa, 31(3), 147–154.
Putman, A. I., & Carbone, I. (2014). Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecology and Evolution, 4(22), 4399–4428. https://doi.org/10.1002/ece3.1305
Reis, S. P., Gonçalvez, E. C., Silva, A., & Schneider, M. P. C. (2008). Genetic variability and efficiency of DNA microsatellite markers for paternity testing in horse breeds from the Brazilian Marajó archipelago. Genetics and Molecular Biology, 31(1), 68–72. https://doi.org/10.1590/S1415-47572008000100014
Rukavina, D., Storil, B. K., Durmic-Pasic, A., Mackic-Durovic, M., Babic, S., Ajanovic, A., & Pojskic, N. (2021). Evaluation of the genetic diversity and population structure of potential Bosnian mountain horse based on microsatellite markers. Veterinaria, 70(2), 219–227. https://doi.org/10.51607/22331360.2021.70.2.219
Saptadi, D., Heliyanto, B., & Sudarsono. (2020). Short communication: Cross-species amplification of microsatellite markers developed for jatropha curcas within five species of jatropha. Biodiversitas, 21(11), 5072–5076. https://doi.org/10.13057/biodiv/d211111
Saragih, C. I., Suada, I. K., & Sampurna, I. P. (2013). Ketahanan susu kuda sumbawa ditinjau dari waktu reduktase. Indonesia Medicus Veterinus, 2(5), 553–561.
Selvakumari, E., Jenifer, J., Priyadharshini, S., & Vinodhini, R. (2017). Application of DNA Fingerprinting for Plant Identification. Journal of Academia and Industrial Research, 5(10), 149–151.
Seo, J. H., Park, K. Do, Lee, H. K., & Kong, H. S. (2016). Genetic diversity of Halla horses using microsatellite markers. Journal of Animal Science and Technology, 58, 1–5. https://doi.org/10.1186/s40781-016-0120-6
Sikka, P., & Sethi, R. K. (2008). Genetic variability in production performance of Murrah buffaloes (Bubalus bubalis) using microsatellite polymorphism. Indian Journal of Biotechnology, 7(1), 103–107.
Silva, A. C. M., Paiva, S. R., Albuquerque, M. S. M., Egito, A. A., Santos, S. A., Lima, F. C., Castro, S. T., Mariante, A. S., Correa, P. S., & McManus, C. M. (2012). Genetic variability in local Brazilian horse lines using microsatellite markers. Genetics and Molecular Research, 11(2), 881–890. https://doi.org/10.4238/2012.April.10.4
Singla, K., Rani, Y., Panchal, K., & Singh, R. K. (2017). DNA Fingerprinting. European Journal of Pharmaceutica and Medical Research, 4(8), 244–246.
Sukri, A. (2014). Analisis filogenetik kerbau lokal lombok tengah. Florea, 1(2), 1–4.
Sutarno, Setyawan, A. D., & Lymbery, A. J. (2015). Genetic diversity of five indonesian native cattle breeds at microsatellite loci. In Asian Journal of Animal Sciences (Vol. 9, Issue 2, pp. 57–64). https://doi.org/10.3923/ajas.2015.57.64
Teneva, A., Todorovska, E., Petrovic, M., Kusza, S., Perriassamy, K., Caro-Petrovic, V., Ostojic-Andric, D., & Gadjev, D. (2018). Short tandem repeats (STR) in cattle genomics and breeding. Biotechnology in Animal Husbandry, 34(2), 127–147. https://doi.org/10.2298/bah1802127t
Uffo, O., Martínez, N., Acosta, A., Sanz, A., Martín-Burriel, I., Osta, R., Rodellar, C., & Zaragoza, P. (2017). Analysis of microsatellite markers in a Cuban water buffalo breed. Journal of Dairy Research, 84(3), 289–292. https://doi.org/10.1017/S0022029917000425
Ustyantseva, A. V., Khrabrova, L. A., Abramova, N. V., & Ryabova, T. N. (2019). Genetic characterization of Akhal-Teke horse subpopulations using 17 microsatellite loci. IOP Conference Series: Earth and Environmental Science, 341, 1–6. https://doi.org/10.1088/1755-1315/341/1/012070
Vieira, M. L. C., Santini, L., Diniz, A. L., & Munhoz, C. de F. (2016). Microsatellite markers: What they mean and why they are so useful. Genetics and Molecular Biology, 39(3), 312–328. https://doi.org/10.1590/1678-4685-GMB-2016-0027
Vigneshwaran, V., Thirusangu, P., Vijay Avin, B. R., Krishna, V., Pramod, S. N., & Prabhakar, B. T. (2017). Immunomodulatory glc/man-directed Dolichos lablab lectin (DLL) evokes anti-tumour response in vivo by counteracting angiogenic gene expressions. Clinical and Experimental Immunology, 189(1). https://doi.org/10.1111/cei.12959
Vohra, V., Singh, N. P., Chhotaray, S., Raina, V. S., Chopra, A., & Kataria, R. S. (2021). Morphometric and microsatellite-based comparative genetic diversity analysis in Bubalus bubalis from North India. PeerJ, 9, 1–23.
Wangiyana, I. G. A. S., Nugraheni, Y. M. M. A., Anggadhania, L., & Soetarto, E. S. (2021). Morphological and DNA Polymorphism Analyses of Fusarium Solani Isolated from Gyrinops Versteegii in the West Nusa Tenggara Forest. ASM Science Journal, 14(2), 65–74.
Wangiyana, I. G. A. S., Supriadi, Nikmatullah, A., Sunarpi, & Triandini, I. G. A. A. H. (2022). Diversity of Gyrinops versteegii from several agarwood plantation on Lombok Island (Indonesia) as raw material of Gyrinops tea. Biodiversitas, 23(1), 178–186.
Wibisono, H. W., Wandia, I. N., & Suatha, I. K. (2017). Morfometri kuda (Equus caballus) jantan dewasa yang dipelihara di Kabupaten Lombok Timur, Nusa Tenggara Barat. Indonesia Medicus Veterinus, 6(1), 55–61. https://doi.org/10.19087/imv.2017.6.1.55