Morphological characteristic of malaria vector Anopheles aconitus (Family: Culicidae) revealed by advanced light and scanning electron microscope

##plugins.themes.bootstrap3.article.main##

SUPRIYONO
SUSI SOVIANA
DIMAS NOVIANTO
MUHAMMAD FALIKHUL MUSYAFFA
SURIYANI TAN
UPIK KESUMAWATI HADI

Abstract

Abstract. Supriyomo, Soviana S, Novianto D, Musyaffa MF, Tan S, Hadi UK. 2022. Morphological characteristic of malaria vector Anopheles aconitus (Family: Culicidae) revealed by advanced light and scanning electron microscope. Biodiversitas 23: 3546-3552. Anopheles aconitus (An. aconitus) is one of the primary vectors for malaria in several areas in Indonesia, especially in Java Island. Scanning electron microscope (SEM) is a powerful tool that can differentiate Anopheles spp. Morphology that is difficult to identify by using a light microscope only. The adult of An. aconitus used in this study have been reared in the laboratory. This research is conducted to better understand the Anopheles aconitus' external morphology, such as the head, proboscis, wings, thorax and legs, using advanced light and SEM. Results from an advanced light microscope showed that An. aconitus has palpus with the same length as proboscis with one narrow basal end and two broad distal ends; meanwhile, the apical half of proboscis is pale. Anopheles aconitus has wings with four pale spots on the costa side. Legs are uniformly dark with only very narrow, rather faint pale bands at the joining of segments. Using SEM, we found several types of sensilla trichodea: short-sharp tipped, short-blunt tipped, and long-shaped tipped in antenna, apical proboscis, maxillary palps, abdomen, and legs. Antenna is also covered with microtrichia and sensilla. This research is important for basic necessity in fully understanding and determining of mosquito bionomic due to the development of effective and efficient mosquito vector control strategies.

##plugins.themes.bootstrap3.article.details##

References
Dagen M. 2020. Chapter 1 - History of malaria and its treatment. In: Patrick GL, editor. Antimalarial Agents: Elsevier. p. 1-48.
CDC. 2020. Ross and the discovery that mosquitoes transmit malaria parasites. https://www.cdc.gov/malaria/about/history/ross.html.
World Health Organization (WHO). 2020. World malaria report 2020: 20 years of global progress and challenges. World malaria report 2020: 20 years of global progress and challenges2020.
Varo R, Chaccour C, Bassat Q. 2020. Update on malaria. Medicina clinica. 155(9):395-402. DOI: 10.1016/j.medcli.2020.05.010.
Guntur RD, Kingsley J, Islam FMA. 2021. Epidemiology of Malaria in East Nusa Tenggara Province in Indonesia: Protocol for a Cross-sectional Study. JMIR Res Protoc. 10(4):e23545.
Sitohang V, Sariwati E, Fajariyani SB, Hwang D, Kurnia B, Hapsari RK. 2018. Malaria elimination in Indonesia: halfway there. The Lancet Global Health. 6(6):e604-e6.
Komaki-Yasuda K, Vincent JP, Nakatsu M, Kato Y, Ohmagari N, Kano S. 2018. A novel PCR-based system for the detection of four species of human malaria parasites and Plasmodium knowlesi. PLoS One. 13(1):e0191886.
Barber BE, Rajahram GS, Grigg MJ, William T, Anstey NM. 2017. World Malaria Report: time to acknowledge Plasmodium knowlesi malaria. Malaria Journal. 16(1):135
Choi L, Pryce J, Richardson M, Lutje V, Walshe D, Garner P. 2019. Guidelines for malaria vector control. World Health Organization. 1-171.
Benelli G, Beier JC. 2017. Current vector control challenges in the fight against malaria. Acta Tropica. 174:91-6. DOI: 10.1016/j.actatropica.2017.06.028.
Choi L, Pryce J, Garner P. 2019. Indoor residual spraying for preventing malaria in communities using insecticide?treated nets. Cochrane Database of Systematic Reviews. 5. DOI: 10.1002/14651858.CD012688.pub2.
Lindsay SW, Thomas MB, Kleinschmidt I. 2021. Threats to the effectiveness of insecticide-treated bednets for malaria control: thinking beyond insecticide resistance. The Lancet Global Health.
Mahdalena V, Wurisastuti T. 2020. Gambaran distribusi spesies Anopheles dan perannya sebagai vektor malaria di provinsi Nusa Tenggara Timur, Papua dan Papua Barat. Spirakel. 12(1):46-59. DOI: https://doi.org/10.22435/spirakel.v12i1.3441.
Yan ZT, Fu WB, Chen B. 2019. Complete mitochondrial genomes of Anopheles aconitus and Anopheles splendidus and phylogenetics analysis of known mtgenomes in the subgenus Cellia (Diptera: Culicidae: Anophelinae). Mitochondrial DNA Part B. 4(1):1848-50. https://doi.org/10.1080/23802359.2019.1613185.
Stoops CA, Rusmiarto S, Susapto D, Munif A, Andris H, Barbara KA. 2009. Bionomics of Anopheles spp. (Diptera: Culicidae) in a malaria endemic region of Sukabumi, West Java, Indonesia. Journal of Vector Ecology. 34(2):200-7. DOI: 10.1111/j.1948-7134.2009.00027.x
Sugiarto, Hadi UK, Soviana S, Hakim L. 2017. Bionomics of Anopheles (Diptera: Culicidae) in a malaria endemic region of Sungai Nyamuk village, Sebatik Island – North Kalimantan, Indonesia. Acta Tropica. 171: 30-36. https://doi.org/10.1016/j.actatropica.2017.03.014.
Soleimani-Ahmadi M, Vatandoost H, Zare M, Turki H, Alizadeh A. 2015. Topographical distribution of anopheline mosquitoes in an area under elimination programme in the south of Iran. Malar J 14: 262. https://doi.org/10.1186/s12936-015-0771-7.
Elyazar IR, Sinka ME, Gething PW, Tarmidzi SN, Surya A, Kusriastuti R. 2013. The distribution and bionomics of anopheles malaria vector mosquitoes in Indonesia. Adv Parasitol. 83:173-266. doi: 10.1016/B978-0-12-407705-8.00003-3.
Depkes RI. 2000. “Kunci bergambar untuk Anopheles dewasa Direktorat Jenderal Pemberantasan Penyakit Menular dan Penyehatan Lingkungan.
Matowo NS, Martin J, Kulkarni MA, Mosha JF, Lukole E, Isaya G, Shirima B, Kaaya R, Moyes C, Hancock PA, Rowland M, Manjurano A, Mosha FW, Protopopoff N, Messenger LA. 2021. An increasing role of pyrethroid-resistant Anopheles funestus in malaria transmission in the Lake Zone, Tanzania. Sci Rep.11(1):13457. doi: 10.1038/s41598-021-92741-8.
Harbach RE, Kitching IJ. 1998. Phylogeny and classification of the Culicidae (Diptera). Syst Entomol. 23:237–370.
Teskey HJ. 1981. Key to families-larvae. In: McAlpine JF, Peterson BV, Shewell GE, Teskey HJ, Vockeroth JR, Wood DM. 1981. Manual of Nearctic Diptera, vol. 1. Ottawa: Biosystematics Research Institute.
Lesmana SD, Maryanti E, Haslinda L, Putra W, Fadhillah MN, Anwar FR, Lutfi R. 2020. Identification of Anopheles Mosquito Species as Malaria Vector In Riau, Indonesia. J Med Sci. 14 (1). p-ISSN 1968-662X.
Sallum MAM, Obando RG, Carrejo N. 2020. Identification keys to the Anopheles mosquitoes of South America (Diptera: Culicidae). I. Introduction. Parasites Vectors 13, 583.
Hempolchom C, Yasanga T, Wijit A, Taai K, Dedkhad W, Srisuka W, Thongsahuan S, Otsuka Y, Takaoka H, Saeung A. 2017. Scanning electron microscopy of antennal sensilla of the eight Anopheles species of the Hyrcanus Group (Diptera: Culicidae) in Thailand. Parasitol Res. 116(1):143-153. doi: 10.1007/s00436-016-5270-4.
Mathania MM, Munisi DZ, Silayo RS. 2020. Spatial and temporal distribution of Anopheles mosquito's larvae and its determinants in two urban sites in Tanzania with different malaria transmission levels. Parasite Epidemiology and Control. Parasite Epidemiology and Control. 11: e00179. https://doi.org/10.1016/j.parepi.2020.e00179.

Most read articles by the same author(s)